
Java programming language

Page 1 of 3

1. Open a terminal (Command Prompt on Windows or terminal on Linux).

2. Run the following command to create a keystore with a private key and a self-signed certificate:

Enter a password for the keystore (e.g., password).
Fill in the requested information (e.g., name, organization, location).
The server.keystore file will be created.

3. Export the server's certificate:

keytool -export -alias server -keystore server.keystore
-file server.cer

Enter the keystore password when prompted.
The server.cer file will be created. This file contains the public certificate of the server.

1. Import the server's certificate into a truststore:

keytool -import -alias server -file server.cer -keystore
client.truststore

Enter a password for the truststore (e.g., password).
Type yes to trust the server certificate.
The client.truststore file will be created.

For two Windows systems:

1. Transfer the server.keystore file to the server machine.

keytool -genkeypair -alias server -keyalg RSA -keysize 2048 -keystore
server.keystore -validity 365

Generating Keys and Certificates for SSL/TLS Communication

1. Create the Keystore and Certificate for the Server

2. Create the Truststore for the Client

3. Testing Across Two Systems

Java programming language

Page 2 of 3

2. Transfer the client.truststore file to the client machine.
3. Update the paths to the keystore and truststore in the SecureServer and

SecureClient code to point to these files on their respective machines.

For one Linux and one Windows system:

1. Transfer the server.keystore file to the Linux machine.
2. Transfer the client.truststore file to the Windows machine.
3. Ensure that the file permissions on Linux allow access to the server.keystore file for

the user running the server:

chmod 600 server.keystore

4. Update the paths in the code on both systems to correctly point to the files. For Linux, use
absolute paths (e.g., /home/user/server.keystore).

1. On the server machine, ensure the server code includes:

2. On the client machine, ensure the client code includes:

1. Start the server:

On the server machine, run the SecureServer class. Ensure the server.keystore
file is accessible at the configured path.

2. Run the client:

On the client machine, run the SecureClient class. Ensure the client.truststore
file is accessible at the configured path.

System.setProperty("javax.net.ssl.keyStore", "path/to/server.keystore"
System.setProperty("javax.net.ssl.keyStorePassword", "password");

System.setProperty("javax.net.ssl.trustStore", "path/to/client.trustst
System.setProperty("javax.net.ssl.trustStorePassword", "password");

Configuring Java Code to Use Keystore and Truststore

Running the Applications

Java programming language

Page 3 of 3

The client should send a "Hello" message to the server, and the server should respond with
"Goodbye".
If the configuration is correct, the communication will be encrypted and secure.

Verifying the Communication

