
Java programming language

Page 1 of 12

When we develop a graphical application in a given Java library, such as Swing, JavaFX or even an Android
application, we have to keep in mind that they all use a single thread to process all UI events. This is
because the controls or nodes that we put on a scene are not thread-safe, so they are fast (since they do not
need any synchronization mechanism), but they need to be accessed from a single thread. In the case of
JavaFX, for instance, this thread must be the main JavaFX application thread. As a consequence of this, there
should not be any long running task in this main application thread, because the whole application would
hang until this task finishes.

This problem does not apply to animations in JavaFX. When we use a transition class, or a KeyFrame and
Timeline classes to define a transition, they manage their own threads to perform the animation out of

the main application thread, and we can interact with the application while the animation runs.

Let's see this problem with a JavaFX example:

Concurrent programming

Threads in JavaFX applications

1. Introducing the problem

file:///d%3A/Trabajo/Apuntes/java/md/en/14g.pdf

Java programming language

Page 2 of 12

public class Example_JavaFXThreads extends Application
{
 // Copy progress
 int progress;

 public static void main(String[] args)
 {
 launch(args);
 }

 @Override
 public void start(Stage primaryStage)
 {
 Label lblProgress = new Label("");
 Button btnStart1 = new Button("Start copy (1)");

 btnStart1.setOnAction(e ->
 {
 for (int progress = 1; progress <= 10; progress++)
 {
 try
 {
 Thread.sleep(1000);
 lblProgress.setText("" + (progress*10)
 + "% completed");
 } catch (Exception ex) {}
 }
 });

 VBox vb = new VBox(20);
 vb.setAlignment(Pos.CENTER);
 vb.getChildren().addAll(lblProgress, btnStart1);
 Scene scene = new Scene(vb, 300, 400);
 primaryStage.setScene(scene);
 primaryStage.show();
 }
}

The application of the example simulates the copy of a large file, and when we press the Start copy (1) button,
a message is printed every second showing the percentage of file that has been copied for now. If we try to
run the application and we click on the Start copy (1) button, we will find out that:

The label does not update its percentage, as it should.
If we try to close the application while the task is running, it will not close.

Why does this happen? As we have said before, all the event handling of the application runs on the main
application thread. So, when it is sleeping and changing the label's text in the event loop, nothing else is
running (the whole application is waiting for this event to finish).

Java programming language

Page 3 of 12

We could think that, to solve the problem shown in previous example, we could just call a thread that does
the file copy and updates the label progress. Let's do it. In order to keep the original program in its original
version, we are going to add a new button, Start copy (2), and we are going to create a thread in its
ActionEvent to do the same task that we did before in the event handler of the first button.

We would add the button with the event handler:

Button btnStart2 = new Button("Start copy (2)");

// "Start copy (2)" event: calling a thread to do the task
btnStart2.setOnAction(e ->
{
 Thread t = new Start2Thread(lblProgress);
 t.start();
});

And then we would add the thread class. We pass the Label as a parameter to have it accessible. In the run
method we copy the same code that we used for the btnStart1 event.

class Start2Thread extends Thread
{
 // Progress label to update its text
 Label lblProgress;

 public Start2Thread(Label lblProgress)
 {
 this.lblProgress = lblProgress;
 }

 @Override
 public void run()
 {
 for (int progress = 1; progress <= 10; progress++)
 {
 try
 {
 Thread.sleep(1000);
 lblProgress.setText("" + (progress*10) + "% completed");
 } catch (Exception ex) {}
 }
 }
}

1.1. Trying to solve the problem. First attempt

Java programming language

Page 4 of 12

If we click on this second button, an IllegalStateExcepcion will be thrown. The reason is this line of
code inside the run method:

lblProgress.setText("" + (progress*10) + "% completed");

As we have said before, no one but the main application thread can access the UI, because its controls are not
thread-safe.

The problem when using a secondary thread is that we can't access the UI elements from it. To avoid this,
some libraries and frameworks such as JavaFX or Android provide some ways of passing tasks from those
secondary threads to the main application. In our case, we need to pass to the main application the task of
updating the lblProgress text. We can replace this line of code in the run method of our thread:

lblProgress.setText("" + (progress*10) + "% completed");

with this line(s):

Platform.runLater(() ->
 lblProgress.setText("" + (progress*10) + "% completed"));

We have introduced a new method: the Platform.runLater method, whose mission is to schedule the
specified task(s) to be run on the main application thread at an unspecified moment in the future (we can't
control when). This way, whenever we are trying to update the status of a control from outside the main
application thread, we can call this method to be sure that no exception will be thrown. We can check if we
are on the main application thread or not by using the isFxApplicationThread method.

Exercise 1:

Create a project called My3Counters. It must have 3 buttons and 3 labels:

A button with the text From 1 to 10 that will start a thread that counts from 1 to 10, showing the
current number in the corresponding label, and sleeping 1 second after showing each number.
A button with the text From 1 to 5, with its corresponding label, to count from 1 to 5 (1 number per
second as well)
A button with the text From 10 to 1, with its corresponding label, to count from 10 to 1 (a number
per second too).

As soon as we click on a button, its corresponding counting will start, and the button will be disabled
(use the setDisable method from the Button object). We may run the three tasks at the same time if we

1.2. Trying to solve the problem. Second and final attempt

Java programming language

Page 5 of 12

want to. Here you can see a screenshot of the application.

The example shown before only uses the basics of a JavaFX application and the basics of thread handling that
we have learnt so far, and it combines them to create a multithreaded graphical application. However, this is
not the "correct" way of creating such type of applications since, as soon as the application gets more and
more complicated, these basic methods that we have explained (such as Platform.runLater) will not be
enough.

In order to use a stronger way of creating multithreaded applications, JavaFX provides a concurrency
framework composed of the following elements:

The Worker interface. It represents every task that needs to be performed in one or more additional
threads. It has an inner enum called Worker.State , with all the possible states of the task (READY,
RUNNING, CANCELLED...)
The Task abstract class implements the Worker interface to define tasks that can be run only once
(they can't be reused).
The Service abstract class also implements the Worker interface to define tasks that can be run
more than once (they can be reused).
The ScheduledService abstract class is a subtype of Service class to define tasks that can be
scheduled to be run repeatedly after a given time interval.
The WorkerStateEvent is an event that is fired every time the state of a Worker changes, so that we
can execute some instructions or methods when this happens.

We are going to see an example of creating a Service and running it in background. We are going to solve
the same problem shown in previous example (the simulation of a file copy) with a service. In this new
example, we are going to add the possibility of cancelling the copy while it is running, an essential ability of
Service class.

2. The JavaFX concurrency framework

2.1. Using Service

Java programming language

Page 6 of 12

Our service class would look like this one:

class FileService extends Service<String>
{
 @Override
 protected Task<String> createTask()
 {
 return new Task<String>()
 {
 @Override
 protected String call() throws Exception
 {
 for (int progress = 1; progress <= 10; progress++)
 {
 try
 {
 Thread.sleep(1000);
 updateMessage("" + (progress * 10)
 + "% completed");
 } catch (Exception ex) { }
 }
 return "Copy completed";
 }
 };
 }
}

We just extend Service class. It can be parameterized to set a return type, and, in our case, we are going
to return a String when the service finishes, just to show you how this return value works. We must override
createTask method from Service abstract class. Inside this method, we create an anonymous class of

the task we are going to create (since Task is an abstract class as well, we need to either create a Task
subclass or return a Task through an anonymous class). In the call method of this Task, we do our job
(the file copy simulation). Notice that, instead of getting the label and setting its text, we just call the
updateMessage method. In our main application we will bind the label's text with this message to update

the text automatically.

Our main JavaFX controller would be like this:

Java programming language

Page 7 of 12

public class FXServiceExampleController implements Initializable
{
 @FXML
 private Button btnStart;
 @FXML
 private Label lblProgress;
 @FXML
 private Button btnCancel;

 FileService service;

 @FXML
 private void start(ActionEvent event)
 {
 setProperties(true, false);
 service.start();
 }

 @FXML
 private void cancel(ActionEvent event)
 {
 setProperties(false, true);
 service.cancel();
 }

 @Override
 public void initialize(URL url, ResourceBundle rb)
 {
 service = new FileService();
 // Events to be fired when service finishes/cancels/fails...

 service.setOnSucceeded(e -> {
 setProperties(false, true);
 System.out.println(service.getValue());
 service.reset();
 });

 service.setOnCancelled(e -> {
 setProperties(false, true);
 service.reset();
 });

 service.setOnFailed(e -> {
 setProperties(false, true);
 service.reset();
 });

 // Bind label text property to service
 lblProgress.textProperty().bind(service.messageProperty());

Java programming language

Page 8 of 12

 btnCancel.setDisable(true);
 }

 // Method to disable/enable buttons and set label's text from events
 private void setProperties(boolean disableStart, boolean disableCancel)
 {
 btnStart.setDisable(disableStart);
 btnCancel.setDisable(disableCancel);
 }
}

From the start method we have introduced some new interesting instructions: the methods from the
service to start, cancel or reset it, depending on the event that we are handling. We start the service from the
Start button event, we cancel it from the Cancel button event, and we reset it from some WorkerStateEvents,
handled by the setOnSucceeded , setOnCancelled and setOnFailed methods. For instance,
whenever the service is cancelled, the setOnCancelled method will be fired, and then we will reset the
service. Also, we have added the binding from the label text property to the service message property,
established in this line:

lblProgress.textProperty().bind(service.messageProperty());

Thanks to this, the service can update the text of the label from its code. If you run the example, notice that,
as soon as the service finishes or it is cancelled, the label text gets empty.

The service has also some other properties, such as titleProperty , valueProperty ... that we can use
to bind them to some other controls of our application, if we want to. This is useful when we want to update
several controls from the same service.

However, if we bind a control to a property, the control's value can't be set outside this property. In other
words, if we want to set the label's text directly (with its setText method) in the main application, an
exception will be thrown. We need to unbind temporarily the control (with the unbind method), set the
value, and bind it again to the property.

The return value of the service is used inside the setOnSucceeded method. When the service finishes
properly, it will return a String with the text "Copy completed". We can check this in the standard output,
thanks to this line of code:

System.out.println(service.getValue());

The setProperties method is used from some events to update the "disable" state of both buttons (when
we Start the copy, we disable the Start button, for instance), and the label text.

Exercise 2:

Java programming language

Page 9 of 12

Create a project called My3CountersService, that will be a copy of project My3Counters from exercise 1.
In this case, you must use a Service to implement the 3 tasks. As soon as a given count finishes, the
corresponding button must turn enabled, and we will be able to start it again.

HELP: You must implement a void Service. As Service is a parameterized class, when you want it to return a
void result you must use the <Void> parameter. In the call method, it must return a Void type,
and you can do it by using a return null instruction at the end of the method.

If we want to execute a task periodically using a Service, ScheduledService is more suited for that job than
using a loop with sleeping period inside a Service. This kind of task runner is very similar to what we have just
seen before, but it repeats itself automatically after a period of time until we cancel it.

We can set a delay before the first run calling setDelay . The time it will wait before it starts again after it
finishes is set with setPeriod . If all goes well, every time this service finishes its task, it will call the function
passed on setOnSucceeded .

2.2. Using ScheduledService

https://docs.oracle.com/javase/8/javafx/api/javafx/concurrent/ScheduledService.html

Java programming language

Page 10 of 12

public class FXServiceExampleController implements Initializable
{
 @FXML
 private Button button;

 @FXML
 private Label threadsPending;

 @FXML
 private Label threadsFinished;

 private ScheduledService<Boolean> schedServ;
 private ThreadPoolExecutor executor;

 @Override
 public void initialize(URL url, ResourceBundle rb)
 {
 schedServ = new ScheduledService<Boolean>()
 {
 @Override
 protected Task<Boolean> createTask()
 {
 return new Task<Boolean>()
 {
 @Override
 protected Boolean call() throws Exception
 {
 Platform.runLater(() -> {
 threadsPending.setText("Pending threads: " +
 (executor.getTaskCount() -
 executor.getCompletedTaskCount()));

 threadsFinished.setText("Finished threads: " +
 executor.getCompletedTaskCount());
 });
 return executor.isTerminated();
 }
 };
 }
 };

 schedServ.setDelay(Duration.millis(500)); // Will start after 0.5s
 schedServ.setPeriod(Duration.seconds(1)); // Runs every second after
 schedServ.setOnSucceeded(e -> {
 if(schedServ.getValue())
 {
 // Executor finished
 schedServ.cancel(); // Cancel service (stop it).
 button.setDisable(false);

Java programming language

Page 11 of 12

 }
 });
 }

 @FXML
 private void startThreads(ActionEvent event)
 {
 button.setDisable(true);
 executor = (ThreadPoolExecutor)Executors.newFixedThreadPool(
 Runtime.getRuntime().availableProcessors());

 for(int i = 0; i < 20; i++)
 {
 executor.execute(() -> {
 Random rnd = new Random();
 try
 {
 TimeUnit.MILLISECONDS.sleep(500 + rnd.nextInt(5000));
 } catch (InterruptedException ex) { }
 });
 }
 executor.shutdown();
 schedServ.restart();// Start the scheduled service (or restart it)
 }
}

The code above will start an executor with 20 tasks that will take between 0.5s and 5.5s to complete. The
ScheduledService will start after 0.5 seconds and run every second, examining the executor (showing how
many tasks are pending and how many finished) and returning if the executor has finished executing all its
tasks. When the executor finishes the ScheduledService will be cancelled.

Exercise 3:

Create a project called ScheduledChronometer. Create a view with a TextField where you’ll write a
number of seconds and a Start and Pause buttons.

Java programming language

Page 12 of 12

When you press Start button, launch a ScheduledService that will launch every second. This service
will decrement the number (starting from the value in the TextField) and return it. When it arrives to 0, it
will stop (cancel).

If the service is running and you press Pause, it will stop. If you press start again, it will start from the last
value.

