
Java programming language

Page 1 of 19

There are different ways of synchronizing or coordinating threads when they are launched from the
same application. We can, for instance, assign different priorities to each thread so that some of them
are faster than the rest. We can also join threads, i.e., make a thread wait until another thread finishes
its task completely. From that point on, there are more complex synchronization structures, such as
mutual exclusion, locks... We will see some of this techniques in this section.

If we want a thread to wait until another thread finishes, we can use the join method from the thread that
we want to wait for. In this example, the main application creates a thread and waits until it finishes
before going on:

public static void main(String[] args)
{
 Thread t = new MyThread();
 t.start();
 t.join();
}

In fact, join method can throw an InterruptedException , so we have to catch it:

public static void main(String[] args)
{
 Thread t = new MyThread();
 t.start();
 try
 {
 t.join();
 } catch (InterruptedException e) {
 ...
 }
}

Concurrent programming

Thread synchronization and coordination

1. Basic coordination. Joining threads

file:///Users/mariaconsuelorubiosanchez/Documents/GitHub/Java/java/md/en/14d.pdf

Java programming language

Page 2 of 19

If we want a secondary thread (not main program) to wait for another thread, then we need to tell this
thread which is the thread it must wait for. We typically use an attribute inside thread class to store this
information:

public class MyThread extends Thread
{
 Thread waitThread;

 // We will use this constructor
 // if thread does not have to wait for anyone
 public MyThread()
 {
 waitThread = null;
 }

 // We will use this constructor
 // if thread has to wait for thread "wt"
 public MyThread(Thread wt)
 {
 waitThread = wt;
 }

 // We check if waitThread attribute is not null,
 // and then call the join method before keep on running
 public void run()
 {
 if (waitThread != null)
 waitThread.join();
 ...
 }
}

Then, in main application, we create two threads of type MyThread, and ask one of them to wait for the
other:

public static void main(String[] args)
{
 Thread t1 = new MyThread();
 Thread t2 = new MyThread(t1);
 t1.start();
 // We start thread t2, but it will not run until t1 finishes
 t2.start();
}

Note: When using join in secondary threads, make sure to handle potential
InterruptedException to avoid unexpected behavior in the thread coordination.

Java programming language

Page 3 of 19

public class MyThread extends Thread
{
 Thread waitThread;

 public MyThread(Thread wt)
 {
 waitThread = wt;
 }

 public void run()
 {
 try
 {
 if (waitThread != null)
 waitThread.join();
 } catch (InterruptedException e) {
 System.err.println("Thread interrupted");
 }
 ...
 }
}

Exercise 1:

Create a project called ThreadRaceJoin based on previous project of Exercise 3. Change the
behavior of the three running threads (A, B and C) so that each one starts running when previous
thread has finished:

Thread A will start at the beginning of the program.
Thread B will start when thread A finishes.
Thread C will start when thread B finishes.
Main program will wait until the last thread (C) finishes the race.

Exercise 2:

Create a project called MultiplierThreadsJoin based in previous project of Exercise 2. Change
the behavior of the main application so that it waits for each thread to finish before starting the
following. Therefore, all the multiplication tables will be shown in order:

0 x 0 = 0
0 x 1 = 0
...
0 x 10 = 0
1 x 0 = 0
...

Java programming language

Page 4 of 19

It is quite usual that multiple threads want to get the same resource (e.g. a variable, a text file, a
database...), and it is difficult to guarantee that the information in that resource will not be mistakenly
modified (for instance, that a thread changes the value of a variable while another thread is using it).

The piece of code that is in charge of allowing threads to get that shared resource is commonly called
critical section. This code must not be executed by more than one thread at the same time. To achieve
this, Java offers some options.

Let's see the problem in depth with this example: first of all, we create an object of class Counter ,
that will be shared among threads:

public class Counter
{
 int value;

 public Counter(int value)
 {
 this.value = value;
 }

 public void increment()
 {
 value++;
 }

 public void decrement()
 {
 value--;
 }

 public int getValue()
 {
 return value;
 }
}

You can see that Counter class has only one attribute, value, which is the value that will be read
and/or modified by the threads, by calling increment or decrement methods.

Then, we create two types of threads: one that will increment Counter value in a loop, and another
one that will decrement it:

2. Access to shared resources. The need of thread synchronization

Java programming language

Page 5 of 19

What will happen? If you try this example on your IDE, you will find out that the final value of c object
is different every time you run the example. Sometimes it is 105, sometimes it is 97... but it should be
always 100 (it starts with 100, and then one thread is expected to increment the value 100 times and
the other thread is expected to decrement it 100 times as well).

Why can this happen? Well, it may occur that tinc gets into increment method and then the
control goes to tdec , that gets into decrement method. Then, one of these operations (either
value++ or value--) will have no effect. For instance, if tinc reads the value 100 and tries to

set it to 101 but then the control goes to tdec that reads the same value 100 (tinc has not
changed it yet) and sets it to 99, then when the control comes back to tinc , it will set value to 101,
and the decrement will have disappeared.

To solve this problem, Java offers some mechanisms that can be used by a thread to check if there is
any other thread executing the critical section before getting into it. If so, then the thread trying to get
into the critical section is suspended by the synchronization mechanism. If there is more than one

public static void main(String[] args)
{
 Counter c = new Counter(100);

 Thread tinc = new Thread(() -> {
 for (int i = 0; i < 100; i++)
 {
 c.increment();
 try
 {
 Thread.sleep(100);
 } catch (InterruptedException e) { }
 }
 System.out.println("Finishing inc. Final value = "+c.getValue());
 });

 Thread tdec = new Thread(() -> {
 for (int i = 0; i < 100; i++)
 {
 c.decrement();
 try
 {
 Thread.sleep(100);
 } catch (InterruptedException e) { }
 }
 System.out.println("Finishing dec. Final value = "+c.getValue());
 });
 tinc.start();
 tdec.start();
}

Java programming language

Page 6 of 19

thread waiting for a thread to finish the critical section, as soon as it finishes, the JVM chooses one of
the waiting threads (randomly) to execute it. Let's see how this mechanism works, and its variations.

One of the most basic methods of synchronization in Java is the synchronized keyword. We can
use it to control the access to a method, so that it becomes a critical section.

Java only allows the execution of one critical section on each object. If the method is static, then this
critical section is independent from all the objects of that class. In other words, Java only allows the
execution of one critical section per object, and one static critical section per class.

In previous example, if we just add the synchronized keyword to the increment and
decrement methods of Counter class:

public class Counter
{
 int value;

 public Counter(int value)
 {
 this.value = value;
 }

 public synchronized void increment()
 {
 value++;
 }

 public synchronized void decrement()
 {
 value--;
 }

 public int getValue()
 {
 return value;
 }
}

and we run again the program, we will notice that it works perfectly now. Why? Well, if tinc goes
into increment method, then tdec will not be able to enter decrement method, and vice
versa, so we will not have the problem of incrementing and decrementing the value at the same time,
because both threads are sharing the same Counter object, and only one thread can be running a
synchronized method at the same time.

2.1. Synchronizing methods

Java programming language

Page 7 of 19

You will also notice that the program runs slower than before. This is one of the effects of
synchronization, it penalizes the performance of the application.

Exercise 3:

Create a project called BankAccountSynchronized with these classes and methods:

A BankAccount class with an attribute called balance that will store how much money
is there in the account. Add a constructor to initialize the money in the account, and two
methods addMoney and takeOutMoney , that will add or take out the amount passed
as a parameter. Add a getBalance method as well, to retrieve the current balance of the
account.

public BankAccount(int balance) { ... }
public void addMoney(int money) { ... }
public void takeOutMoney(int money) { ... }
public int getBalance() { ... }

A BankThreadSave class with an attribute of type BankAccount . You can either
extend Thread class or implement Runnable interface to do that class. In the run
method, the thread will add 100€ to the bank account for 5 times, sleeping 100 ms between
each operation.
A BankThreadSpend class with an attribute of type BankAccount . You can either
extend Thread class or implement Runnable interface to do that class. In the run
method, the thread will take out 100€ from the bank account for 5 times, sleeping 100 ms
between each operation.
From main class, create a BankAccount object, and an array of 20 BankThreadSave
and 20 BankThreadSpend objects, using all of them the same BankAccount object.
Start them all and see how the bank account balance changes (print a message somewhere
to show the balance after each operation).
At this point, you should have noticed that your bank account does not work properly. Add the
synchronization mechanisms that you consider to solve the problem.

We can also apply the synchronized keyword to a given object in a piece of code, passing the
object as a parameter, this way:

2.2. Synchronizing objects

Java programming language

Page 8 of 19

public void myMethod()
{
 int someValue;
 ...
 synchronized(this)
 {
 someValue++;
 System.out.println("Value changed: " + someValue);
 }
 ...
}

Then, when a thread A tries to execute the instructions inside this block, it will not be able to do it if
another thread B is already executing a critical section affecting the object this . As soon as this
thread B finishes the critical section, the other thread A will wake up and enter the critical section.

Of course, we can use any other object with synchronized keyword. For instance, if we have an
object called file and we want to create a critical section around it, we can do it like this:

public void someMethod()
{
 ...
 synchronized(file)
 {
 ... // Critical section
 }
 ...
}

Note: When synchronizing on objects, ensure that the object used for synchronization (file in this
case) is not exposed publicly to avoid potential synchronization issues caused by external threads.

Exercise 4:

Create a project BankAccountSynchronizedObject based on previous exercise. In this case,
you can't synchronize any method, you can only synchronize objects. What changes would you
add to the project to make sure that it will keep on running properly?

When we have multiple threads running on a program, we can change the priority of each thread, so
that those threads with higher priority will get the processor more frequently. This feature is only applied
to threads, not to processes, since JVM is not responsible for outer processes.

3. Thread priorities

Java programming language

Page 9 of 19

Priorities in threads are just integers from 1 (stored in Thread.MIN_PRIORITY constant) to 10
(stored in Thread.MAX_PRIORITY constant). By default, every thread has a priority of 5
(Thread.NORM_PRIORITY constant), and every thread inherits its parent's priority, unless we
change it later.

To change the priority of a thread, we can use its setPriority method, passing an integer as a
parameter. We can also check the thread's priority with getPriority .

Thread t1 = new MyThread();
Thread t2 = new MyThread();
Thread t3 = new MyThread();

t1.setPriority(Thread.MIN_PRIORITY);
t2.setPriority(Thread.NORM_PRIORITY);
t3.setPriority(Thread.MAX_PRIORITY);

System.out.println("Priority of thread #2 is " + t2.getPriority());

There is a problem with priorities depending on the operating system that we are using. In Windows
systems, you will see that your threads behave more or less according to their priorities, but in Linux
and Mac OS X systems, the priority that we try to set to each thread has no effect. So we have to keep
in mind that the expected behavior of our threads is not guaranteed, and it will depend on the operating
system, unless we look for another options.

If we need to be sure that some threads will have a higher priority, we can't rely on setPriority
method, because the operating system may ignore these priorities. An alternative option is to use
random numbers and the yield or sleep methods to force threads to free the processor
according to their real priority. Let's have a look at this example:

3.1. Operating system dependency

Java programming language

Page 10 of 19

public class MyPrioritizedThread extends Thread
{
 int priority;

 public MyPrioritizedThread(int priority)
 {
 this.priority = priority;
 }

 @Override
 public void run()
 {
 java.util.Random r =
 new java.util.Random(System.currentTimeMillis());

 while (condition)
 {
 // Generate a random number between 1 and 10
 int number = r.nextInt(10) + 1;

 // If this number is greater or equal than thread's
 // priority, yield
 if (number >= priority)
 Thread.yield();

 ... // Rest of the instructions for our run loop
 }
 }
}

We define our Thread subclass with its own priority attribute, that will be managed by our
code. In run method, we generate a random number between 1 (that will correspond to
Thread.MIN_PRIORITY) and 10 (that will correspond to Thread.MAX_PRIORITY). If this

number is greater or equal than priority attribute, then our thread will yield. Notice that threads
with lower priorities (i.e. closer to 1) will yield more frequently, and threads with higher priorities (i.e.
closer to 10) will yield from time to time.

If the task planner ignores the yield instruction and our priorities do not seem to have any effect,
then replace the yield instruction with some sleeping time:

if (number >= priority)
 try
 {
 Thread.sleep(5);
 } catch (Exception e) {}

Java programming language

Page 11 of 19

The more milliseconds you put your threads to sleep, the more time will take for threads with lower
priorities to finish their task. It is up to you to adjust the most appropriate number of milliseconds,
depending on the application you are developing.

Exercise 5:

Create a project called ThreadRacePriorities based in ThreadRace project of Exercise 5. Modify
the code so that thread A has MAX_PRIORITY , thread B has NORM_PRIORITY and thread C
has MIN_PRIORITY . Do it with setPriority method. Try to check or see the results in
different operating systems.

Exercise 6:

Create a project called ThreadRacePrioritiesRandom that changes the assignment of priorities
of previous exercise for the second option explained (random numbers and yield/sleep method).
Try to check or see the results in different operating systems.

The producer-consumer problem is a classic problem in concurrent programming. In this type of
problems, we have a data buffer, some producers that put data into that buffer and some consumers
that take data from the buffer. We have to make sure that consumers will not try to take data when the
buffer is empty and, in some cases, that producers will not produce more data until consumers take the
existing one, or if buffer is full.

In these type of problems the use of synchronized keyword is not enough. We have to add some
mechanisms to make either producers or consumers wait until the other side has done its job. To do
this, we can use the wait , notify and notifyAll methods, from Object class:

The wait method can be called inside a synchronized block. Then, the JVM puts the thread to
sleep and releases the object controlled by this synchronized block, so that other threads running
synchronized blocks of the same object can go on.
The notify or notifyAll methods are called by a thread that has finished its task inside a
critical section, before leaving it, to tell the JVM that it can wake up a thread previously put to sleep
with a wait method. The main difference between these two methods (notify and
notifyAll) is that, with notify , the JVM chooses one thread waiting (randomly), whereas

with notifyAll the JVM wakes up every thread waiting, and the first who gets into the critical
section is the one who goes on (the others will keep on waiting).

Let's see an example: we will create two types of threads: a Producer that will put some data (for
instance, an integer) into a given object (we will call it SharedData), and a Consumer that will get
this data.

Our SharedData class is this one:

4. The producer-consumer problem

Java programming language

Page 12 of 19

public class SharedData
{
 int data;

 public int get()
 {
 return data;
 }

 public void put(int newData)
 {
 data = newData;
 }
}

Our Producer and Consumer threads are these ones:

Java programming language

Page 13 of 19

public class Producer extends Thread
{
 SharedData data;

 public Producer(SharedData data)
 {
 this.data = data;
 }

 @Override
 public void run()
 {
 for (int i = 0; i < 50; i++)
 {
 data.put(i);
 System.out.println("Produced number " + i);
 try
 {
 Thread.sleep(10);
 } catch (Exception e) {}
 }
 }
}

public class Consumer extends Thread
{
 SharedData data;

 public Consumer(SharedData data)
 {
 this.data = data;
 }

 @Override
 public void run()
 {
 for (int i = 0; i < 50; i++)
 {
 int n = data.get();
 System.out.println("Consumed number " + n);
 try
 {
 Thread.sleep(10);
 } catch (Exception e) {}
 }
 }
}

Java programming language

Page 14 of 19

The main application will create a SharedData object and a thread of each type, and will start both.

public static void main(String[] args)
{
 SharedData sd = new SharedData();
 Producer p = new Producer(sd);
 Consumer c = new Consumer(sd);
 p.start();
 c.start();
}

If we copy this example and see how it works, we will see something like this:

Consumed number 0
Produced number 0
Consumed number 0
Produced number 1
Consumed number 1
Produced number 2
Produced number 3
Consumed number 3
Produced number 4
Consumed number 4
Consumed number 4

See how, sometimes, the producer puts numbers too fast, and sometimes, the consumer gets numbers
too fast as well, so that they are not coordinated (the consumer may read twice the same number, or
the producer may put two consecutive numbers).

We could think that, if we just add the synchronized keyword to get and put methods from
SharedData class, we would solve the problem:

Java programming language

Page 15 of 19

public class SharedData
{
 int data;

 public synchronized int get()
 {
 return data;
 }

 public synchronized void put(int newData)
 {
 data = newData;
 }
}

However, if we run the program again, we may notice that it still fails:

Consumed number 0
Produced number 0
Consumed number 1
Produced number 1
Produced number 2
Consumed number 1
Produced number 3
Consumed number 3
Produced number 4
Consumed number 4

In fact, there are two problems that we need to solve. But let's start with the most important one:
producer and consumer have to work coordinated: as soon as the producer puts a number, the
consumer can get it, and the producer will not be able to produce more numbers until the consumer
gets the previous ones.

To do this, we need to add some changes to our SharedData class. First of all, we need a flag that
tells producers and consumers who goes next. It will depend on whether there is new data to be
consumed (turn for the consumer) or not (turn for the producer).

Java programming language

Page 16 of 19

public class SharedData
{
 int data;
 boolean available = false;

 public synchronized int get()
 {
 available = false;
 return data;
 }

 public synchronized void put(int newData)
 {
 data = newData;
 available = true;
 }
}

Besides, we need to make sure that get and put methods will be called alternatively. To do this,
we need to use the boolean flag and the wait and notify/notifyAll methods, this way:

Java programming language

Page 17 of 19

public class SharedData
{
 int data;
 boolean available = false;

 public synchronized int get()
 {
 if (!available)
 try
 {
 wait();
 } catch (Exception e) {}
 available = false;
 notify();
 return data;
 }

 public synchronized void put(int newData)
 {
 if (available)
 try
 {
 wait();
 } catch (Exception e) {}
 data = newData;
 available = true;
 notify();
 }
}

See how we use wait and notify methods. Regarding get method (called by the
Consumer), if there is nothing available, we wait. Then, we get the number, set the flag to false again

and notify the other thread. In the put method (called by the Producer), if there is something
available, we wait until someone notifies us. Then, we set the new data, set the flag to true again and
notify the other thread.

If both threads try to get to the critical section at the same time, Consumer will have to wait (available
flag is set to false at the beginning), and Producer will set the first data to be consumed. From then
on, they alternate in the critical section, consuming and producing new data each time.

Java programming language

Page 18 of 19

Consumed number 0
Produced number 0
Produced number 1
Consumed number 1
Consumed number 2
Produced number 2
Produced number 3
Consumed number 3
Produced number 4
Consumed number 4
...

Note: Using notifyAll instead of notify can prevent potential deadlocks when multiple
threads are waiting for the same condition. While notify wakes up one random waiting thread,
notifyAll ensures that all waiting threads are notified, reducing the risk of starvation.

public synchronized int get()
{
 if (!available)
 try
 {
 wait();
 } catch (Exception e) {}
 available = false;
 notifyAll();
 return data;
}

public synchronized void put(int newData)
{
 if (available)
 try
 {
 wait();
 } catch (Exception e) {}
 data = newData;
 available = true;
 notifyAll();
}

Exercise 7:

Create a project called DishWasher. We are going to simulate a dish washing process at home,
when someone wash the dishes and someone else dries them. Create the following classes:

Java programming language

Page 19 of 19

A Dish class with just an integer attribute: the dish number (to identify the different
dishes).
A DishPile class that will store up to 5 dishes. It will have a wash method that will put
a dish in the pile (if there is space available), and a dry method that will take a dish from
the pile (if there is any). Maybe you will need a Dish parameter in wash method, to add
a dish to the pile.
A Washer thread that will receive a number N as a parameter, and a DishPile object.
In its run method, it will put (wash) N dishes in the pile, with a pause of 50ms between
each dish.
A Dryer thread that will receive a number N as a parameter, and a DishPile object. In
its run method, it will take out (dry) N dishes from the pile, with a pause of 100 ms
between each dish.
The main class will create the DishPile object, and a thread of each type (Washer
and Dryer). They will have to wash/dry 20 dishes coordinately, so that the output must be
something like this:

Washed dish #1, total in pile: 1
Drying dish #1, total in pile: 0
Washed dish #2, total in pile: 1
Drying dish #2, total in pile: 0
Washed dish #3, total in pile: 1
Washed dish #4, total in pile: 2
Drying dish #4, total in pile: 1
Washed dish #5, total in pile: 2
Washed dish #6, total in pile: 3
Drying dish #6, total in pile: 2
Washed dish #7, total in pile: 3
...

