
Java programming language

Page 1 of 21

When talking about Java, we must take into account that everything is a thread, even the main application,
and everything generated from this application is a thread, so the most important element of concurrent
programming in Java are threads. As we have seen in previous sections, a thread is some kind of subprocess
or subtask whose context is shared partially with the rest of threads of the same application. To be more
precise, every thread of the same application have the same memory space, so they all share the same data.

We can do more or less the same type of operations with threads and processes: create them, synchronize
them, destroy them... But you will notice in a few minutes that the "thread world" offers a wide range of
possibilities that you can't find for processes. That is because your Java main application is a thread already,
and Java is therefore focused on threads.

Processes and threads go through the same states along their life period, as we have explained before here.
But, in addition to those states, we could add a few more to that list, regarding Java threads:

Asleep: the thread has fallen asleep due to a call to the sleep  method that we will see later. As soon
as the sleep time expires, it will come back to the Ready state.
Waiting: the thread is waiting for other thread to reactivate it. It happens when threads are fighting for
limited resources, and the one who gets them is in charge of notifying the others when it has finished.
We will also see this feature in other documents in this unit.

A thread can get to these states from a Running state (only when it is running it can be asked to sleep or wait),
and when it wakes up, it goes to the Ready state until it runs again. So with these new states, our schema for
Java thread states would be like this:

Concurrent programming

Basic thread management

1. Thread states

file:///d%3A/Trabajo/Apuntes/java/md/en/14c.pdf
file:///d%3A/Trabajo/Apuntes/java/md/en/14a


Java programming language

Page 2 of 21

There are some other states that have been deprecated, such as suspended (in earlier versions of Java we
could pause and resume Threads from anywhere, and it was potentially dangerous to data and application
integrity) or stopped (a way of forcing a thread to finish, that was also potentially dangerous).

If we want to define a thread, we have some ways to do it:

Inheriting from Thread  class
Implementing Runnable  interface

Inheriting from Thread class

There is a class in Java called Thread , that can be used for creating threads by inheriting from it, and
implement (override) its run  method.

public class MyThread extends Thread
{ 
    ... // Attributes, constructors and methods of our class 
  
    @Override 
    public void run() 
    { 
        // Code to be executed by the thread 
    } 
} 

Implementing Runnable interface

We can also create a class that implements Runnable  interface and implements its run method.

public class MyOtherThread implements Runnable
{ 
    ... // Attributes, constructors and methods of our class 
    @Override 
    public void run()  
    { 
        // Code to be executed by the thread 
    } 
} 

In this last case, we can also use an anonymous class or a lambda expression to define the Runnable
object.

2. Basic thread handling. Creating and launching threads

2.1. Defining a thread



Java programming language

Page 3 of 21

Runnable lambdaRun = () -> { 
    // Code to be executed by the thread 
}; 

As you can see, in all of these cases, we need to define (override) a run  method that we "inherit" either
from Thread  class or from Runnable  interface. This will be the main method of our thread.

To start running a thread (remember, your main application is also a thread running on the JVM), we do not
have to call its run method directly: there would not be any multitask, since current thread (typically your main
application) would execute run method, not the new thread itself. Instead of doing this, we have to call the
start method that every thread has, and then the system loads the thread state in memory and calls the run
method properly, so that we will be able to have as many threads as we need, running all together.

If we defined the thread by extending Thread  class, then we can create a thread object and run it with
these instructions (according to previous MyThread class example):

Thread t = new MyThread(); 
t.start(); 

If we defined the thread by implementing Runnable  interface, then we can create and run a thread by
defining a new instance of Thread  with a Runnable  object as parameter. Let's see both examples
(normal class and lambda expression) created before:

// Normal class that implements Runnable 
Thread t = new Thread(new MyOtherThread()); 
t.start(); 
 
// Lambda expression 
Thread t = new Thread(lambdaRun); 
t.start(); 

By doing this, the Thread  object that we have just created knows where to find its run  method: in the
Runnable  object that receives as a parameter.

As you will find in many other situations along your career as a programmer, there are different ways of doing
the same thing. In this case, we can create and launch a thread in two flavours: by extending Thread  class

2.2. Creating and launching a thread

2.3. Extending Thread or implementing Runnable?



Java programming language

Page 4 of 21

or by implementing Runnable  interface. In the end, the behavior of the thread created will be the same,
but there are some differences or reasons to choose one way and not the other:

If you extend Thread  class, you will not be able to extend any other class. So use this way only when
your thread class does not need to inherit from anything else. This option is usual in small, simple
applications.
Otherwise, you have "option B", this is, implementing Runnable  interface (or using anonymous classes
or lambda expressions). Remember, you can implement multiple interfaces, but you can only extend one
class. That is why Java leaves this open door: in case you have already extended another class, you can
still have your threads on it. This option is more usual in complex applications.

Let's type an example to see how a thread works. To start with something simple, we are going to create a
thread that counts from 1 to 10. As we do not need to extend from any other class, we are going to create a
Thread  subclass. In later examples we will use Runnable  interface, so that you will see how to work with

both options.

Our basic thread would be like this:

public class MyCounterThread extends Thread  
{ 
    @Override 
    public void run  
    { 
        for (int i = 1; i <= 10; i++) 
            System.out.println("Counting " + i); 
    } 
} 

And our main program that creates and launches this thread looks like this:

public class MyMainCounter  
{ 
    public static void main(String[] args)  
    { 
        MyCounterThread t = new MyCounterThread(); 
        t.start(); 
    } 
} 

Try to copy these classes in a project and run the main program to see that it works properly. Now, let's add
some changes to main program to see how its initial behavior changes. If we put this line at the end of
main  method:

2.4. Example



Java programming language

Page 5 of 21

public class MyMainCounter  
{ 
    public static void main(String[] args)  
    { 
        MyCounterThread t = new MyCounterThread(); 
        t.start(); 
        System.exit(0); 
    } 
} 

What happens when we run the program again? If you run the program multiple times, you will find out that
sometimes it counts to 10, sometimes it does not count anything... and sometimes it counts to somewhere
between 1 and 10. This is because main program is finished unexpectedly with this exit method, and then all
of its threads are killed as well. If the thread started running before its parent was killed, it will be able to
count some numbers.

Now change that instruction for this one:

public class MyMainCounter  
{ 
    public static void main(String[] args)  
    { 
        MyCounterThread t = new MyCounterThread(); 
        t.start(); 
        System.out.println("Hello!!"); 
    } 
} 

What happens now? Your thread counts to 10, and somewhere in the in between of this counting a "Hello!!"
message appears. Maybe it will be shown before number 1, or after number 7... It depends on the moment
when the main program reaches the processor to print its message.

Finally, try to call the start  method again after its first call:

public class MyMainCounter  
{ 
    public static void main(String[] args) 
    { 
        MyCounterThread t = new MyCounterThread(); 
        t.start(); 
        t.start(); 
    } 
} 



Java programming language

Page 6 of 21

You will see that an exception of type IllegalThreadStateException  is thrown. We can't call the
start  method more than once. We have to create a new Thread object.

From this example, we can come to some conclusions:

When we launch a thread from our main application, it starts its independent, parallel running.
When our main application finishes correctly, our thread keeps on running its task until it finishes.
When our main application is forced to finish, our thread finishes as well unexpectedly. To be more
precise, if any thread of our application calls the System.exit  method, all the threads will finish their
execution.
There is no way to know the exact order in which the main application and its threads will produce their
results. It depends on the task planner. Anyway, we will learn how to give more CPU time to some
threads at the expense of the others in brief, and also to synchronize or coordinate threads to produce
results in a given order.
After launching a thread, we will not be able to call its start method again. But we will be able to call
some other methods to get its state and some other features, as we will see later.

Exercise 1:

Create a project called FibonacciThread. Define a thread subclass that shows Fibonacci numbers up to a
given parameter N that will be passed to the constructor.

Remember that Fibonacci numbers are a sequence starting by 1 and 1, on which each new number is
calculated by adding the two previous numbers of the sequence. So the sequence goes like this: 1, 1, 2, 3, 5,
8, 13, 21...

Exercise 2:

Create a project called MultiplierThreads. Define a thread subclass that has a number as its attribute.
Assign a value to this number through the constructor of the class. In the run  method, the thread has
to show the multiplication table of its attribute. Then, from main application, create 10 threads (each one
with a different number) and launch them all at the same time. See how messages from one thread mix
with other threads' messages. For instance...

1 x 0 = 0 
1 x 1 = 1 
3 x 0 = 0 
4 x 0 = 0 
... 

2.5. Conclusions

3. Basic thread information



Java programming language

Page 7 of 21

There are some useful methods and properties in Thread class to get and set some information about a
thread. We are going to focus on three of them for now:

How to set and get the thread's name
How to get the thread state
How to get thread's identifier

If you want to give a name to your threads, you can simply add an attribute name  to your class (either
extending Thread  or implementing Runnable ). But there are some methods in Thread  class that let
us set and get this name without adding any extra information: setName  method sets our thread's name,
getName  method will get this name.

Thread t = new MyCounterThread(); 
t.setName("MyThread A"); 
t.start(); 
System.out.println("Thread " + t.getName() + " has been launched."); 

In this example, we have created a thread, set its name and then print it a few lines below. If we want to
get/set thread's name inside the thread itself (for instance, from run method of the thread), we can call
currentThread  method to get a Thread object that points to current thread, and then get/set its name.

@Override
public void run()  
{ 
    Thread.currentThread().setName("AAA"); 
    ... 
    System.out.println(Thread.currentThread().getName()); 
} 

If you run a thread from a Runnable  instance, you can set the name directly when creating the thread as
the second parameter in the constructor.

Runnable counterRun = () -> { 
    System.out.println(Thread.currentThread().getName() + " running"); 
    for (int i = 1; i <= 10; i++) 
        System.out.println("Counting " + i); 
}; 
Thread t = new Thread(counterRun, "CounterThread"); 
t.start(); 

3.1. Setting and getting the thread's name



Java programming language

Page 8 of 21

We can also get current thread state at any time. To manage these states, there is an inner enum called
Thread.State , and a getState  method in Thread  class. The following example launches a thread

and, a few lines below, checks its current state:

Thread t = new MyCounterThread(); 
t.start(); 
... 
Thread.State st = t.getState(); 

What getState  method returns can be one of the following states, that are represented by constants in
Thread.State  enum: NEW , RUNNABLE , BLOCKED , WAITING , TIMED_WAITING  or TERMINATED .

For instance, if we want to check if the thread has finished its task, we can do it like this:

if (st == Thread.State.TERMINATED) 
    System.out.println("Thread is terminated."); 

We can also check if a thread has finished its task with isAlive  method (from Thread  class):

if (!t.isAlive()) 
    System.out.println("Thread is terminated."); 

Java Virtual Machine assigns a unique identifier to every thread that is created. If we want to get it, we only
have to call the getId  method from Thread  class:

@Override
public void run()  
{ 
    ... 
    System.out.println("Thread #" + Thread.currentThread().getId()); 
} 

In this section we are going to learn how to put threads to sleep, or ask them to leave the processor free.

3.2. Getting thread state

3.3. Getting thread's identifier

4. The sleep and yield methods

4.1. The sleep method



Java programming language

Page 9 of 21

When we call sleep  method, the thread that is calling it automatically falls asleep (i.e. pauses its running),
until the number of milliseconds indicated in the parameter expires. This is useful to let the processor free for
other threads, if our current thread has nothing to do by now, or if we want to help improve the concurrency
among our threads.

The sleep  method is a static method of Thread  class, so to call it we only have to add this instruction in
the position where we want the thread to sleep, with the desired sleeping time in milliseconds:

Thread.sleep(2000); 

This example puts the thread that executes the instruction to sleep during 2 seconds (2000 milliseconds). In
fact, we need to catch a possible exception that can be thrown when using this method:

try  
{ 
    Thread.sleep(2000); 
} catch (InterruptedException e) { 
    ... 
} 

Notice that, even if we use a thread object to call this method…

public static void main(String[] args)  
{ 
    Thread t = new MyThread(); 
    t.start(); 
    t.sleep(2000); 
} 

The thread represented by object t  will not sleep, but our main application will. Remember: the thread that
calls the method is the one that sleeps.

Regarding milliseconds, we can also use TimeUnit  class (from java.util.concurrent  package) and its
properties to specify another time unit, that will be automatically converted to milliseconds. For instance, if we
want our thread to sleep 5 seconds, we can also do it like this:



Java programming language

Page 10 of 21

import java.util.concurrent.TimeUnit; 
... 
try  
{ 
    TimeUnit.SECONDS.sleep(5); 
} catch (InterruptedException e) { ... } 

You can take a look at Java API to see more constants that you can use from TimeUnit  class, such as
MINUTES , HOURS , and so on. The calling to TimeUnit.sleep  generates a call to Thread.sleep  in

fact, with the appropriate conversion to milliseconds.

The yield  method is similar to sleep method, but it does not need a number of milliseconds as a
parameter. It just leaves the processor free so that the task planner can assign it to another thread. If no other
thread is waiting for the processor, then the thread that yielded gets it back.

This method is also static, and it is also applied to the thread that calls it. It does not throw any exception
when it is called, so we can use it simply like this:

Thread.yield(); 

There is a potential problem when using yield  method: the task planner of JVM may ignore this
instruction, so we can't be sure that a thread will yield when we ask it to.

In this example, we are going to define a thread (implementing Runnable  interface through a lambda
expression) that counts from A to Z, sleeping 100ms after printing each letter. Main program will wait for this
thread to finish, checking its state after each iteration.

4.2. The yield method

4.3. Example



Java programming language

Page 11 of 21

public static void main(String[] args)
{ 
    Thread t = new Thread(() -> { 
        for (char c = 'A'; c <= 'Z'; c++) 
        { 
            System.out.println(c); 
            try 
            { 
                Thread.sleep(100); 
            } catch (InterruptedException e) { 
                System.err.println("Error: Thread interrupted"); 
            } 
        } 
    }); 
 
    t.start(); 
    do 
    { 
        try 
        { 
            Thread.sleep(100); 
        } catch (InterruptedException e) { } 
    } while (t.isAlive()); 
    System.out.println("Thread has finished, and so do I"); 
} 

Notice that main program just sleeps a few milliseconds (they can be 50, 100, 200... it does not matter) on
each iteration. It only has to wait for the thread to finish, it has nothing to do, so it better leave the processor
free by sleeping or yielding.

Exercise 3:

Create a project called ThreadRace. Define a subclass of Thread  and create 3 objects of this subclass.
Each one will have its own name A, B and C, and they will have to count from 1 to 1000. The main
program will have to wait for all its threads to finish, and it will have to sleep 100 ms after each iteration,
and write the current counting for each thread. For instance:

Thread A: 77  Thread B: 82   Thread C: 67 
Thread A: 121 Thread B: 124  Thread C: 117 
... 

You can also call the Java garbage collector in each iteration of run  method if you consider that your
threads are running too fast. Just add this line inside the loop of run  method and the count will slow
down:



Java programming language

Page 12 of 21

System.gc(); 

There are two ways of forcing a thread to finish its task: using boolean flags to tell the thread that it must stop
when it checks those flags, or using interruptions to make it stop.

Threads finish their task when they execute every instruction of their run  method. There is no way we can
stop a thread at a given moment (there was a stop and a destroy methods in earlier versions of Java, but now
they are deprecated). Even if we put its variable to null, the thread resources will keep locked.

But do not worry. We still have one method of asking a thread to finish, even though it will not finish at this
precise moment. This method is applied to threads that have some kind of loop in their run  method. If we
implement this loop properly, we can use a boolean flag to tell the thread if it can go on or if he must finish.

Let's see this method with an example. If we define a thread subclass like this one:

public class KillableThread extends Thread  
{ 
    boolean finish = false; 
 
    public void setFinish(boolean finish)  
    { 
        this.finish = finish; 
    } 
 
    @Override 
    public void run()  
    { 
        while (!finish)  
        { 
            ... // Thread task 
        } 
    } 
} 

Then we can create and launch a thread from our main application, and ask the thread to finish with its
setFinish method:

5. Finishing and interrupting threads

5.1. Finishing threads with boolean flags



Java programming language

Page 13 of 21

public static void main(String[] args)
{ 
    KillableThread kt = new KillableThread(); 
    kt.start(); 
    ... 
    if (someCondition) 
        kt.setFinish(true); 
} 

As soon as the thread goes to the beginning of the loop and checks that finish  variable is true, it will
finish its run  method.

Exercise 4:

Create a project called ThreadRaceKilled based on the project created in Exercise 3. Modify the main
application so that, as soon as thread A gets to 700, it is asked to finish (with a boolean variable). Feel
free to add all the code that you need to each class of the project.

There is a second way of finishing a thread. It consists in calling the interrupt  method of this thread. Let's
see this in the following example:

5.2. Finishing threads with interruptions



Java programming language

Page 14 of 21

public static void main(String[] args)  
{ 
    Thread t = new Thread(() -> { 
        try  
        { 
            while (!Thread.currentThread().isInterrupted())  
            { 
                System.out.println("Running"); 
                Thread.sleep(100); 
            } 
        } catch (InterruptedException e) { } 
        System.out.println("Finished by an interruption"); 
    }); 
 
    t.start(); 
    try  
    {  
        // Wait for a while... 
        Thread.sleep(1000); 
    } catch (InterruptedException e) { } 
 
    t.interrupt(); 
} 

In this example, we create a thread that checks in every loop if it has been interrupted (with
isInterrupted  method, from Thread  class). If not, it keeps on running (i.e., printing a message and

sleeping 100ms). From the main thread, we wait some milliseconds and then interrupt the previously created
thread with interrupt method. This method causes an InterruptedException  that makes the thread go to
the catch  section and finish the run  method.

The InterruptedException  is only thrown because of the sleep  call in Runnable . If we do not call
sleep , wait , join  or any other method that may throw this exception, the try...catch  structure

would not be necessary, and this thread would finish by calling its isInterrupted  method. Notice that a
thread decides if it responds to the interruption or not, by using its isInterrupted  method and/or by
catching the possible exceptions that can be thrown.

Java lets us put some threads into a group so that we can treat this group as a single unit. This way, we will be
able to have some threads doing a task, and control them regardless of the total number of threads in the
group.

To manage groups, we have the ThreadGroup  class. We can create a basic group with a given name, and
even a group inside another group, with its own name:

6. Thread groups and daemons

6.1. Thread groups



Java programming language

Page 15 of 21

ThreadGroup g1 = new ThreadGroup("Main group"); 
ThreadGroup g2 = new ThreadGroup(g1, "Additional group inside main group"); 

To add threads to a group, we can use some of the constructors available in Thread  class. For instance, if
we create a thread by extending Thread  class, we can add it to a group with this constructor (and some
others, check the API for more details):

public Thread(ThreadGroup group, String name); 

If we created the thread by implementing Runnable  interface, we can add it with these constructors (and
some others, check the API for more details):

public Thread(ThreadGroup group, Runnable target); 
public Thread(ThreadGroup group, Runnable target, String name); 

Once we have added the threads to a group, there are some useful methods inside ThreadGroup  class,
such as:

activeCount : returns how many threads in this group (and its subgroups) are currently active (not
finished)
enumerate(Thread[] array) : copies into the specified array every active thread of the group (and

its subgroups)
interrupt : interrupts all threads in the group.
setMaxPriority / getMaxPriority : sets/gets the maximum priority of the threads in the group.

Example

The following example creates some threads from a class that implements Runnable  interface. These
threads are supposed to generate a random number between 1 and 10, sleep the number of seconds
specified by this random number, and then print a message in the screen. But as soon as the first thread
finishes its task, the whole group is interrupted.

The code for the Runnable object is:



Java programming language

Page 16 of 21

import java.util.Random; 
import java.util.concurrent.TimeUnit; 
 
public class MyRandomMessage implements Runnable
{ 
    Random r = new Random (System.currentTimeMillis()); 
    @Override 
    public void run() 
    { 
        int time = r.nextInt(10) + 1; 
        try 
        { 
            TimeUnit.SECONDS.sleep(time); 
            System.out.println("Thread waited " + time +  
                " seconds and finished."); 
        } catch (Exception e) {}  
    } 
} 

Then, our main program would be like this:

public static void main(String[] args)
{ 
    ThreadGroup g = new ThreadGroup("Random messages"); 
    MyRandomMessage m = new MyRandomMessage(); 
    Thread t1 = new Thread(g, m); 
    Thread t2 = new Thread(g, m); 
    Thread t3 = new Thread(g, m); 
    t1.start(); 
    t2.start(); 
    t3.start(); 
 
    while (g.activeCount() == 3) 
    { 
        try 
        { 
            Thread.sleep(100); 
        } catch (Exception e) {} 
    } 
    g.interrupt(); 
} 

As soon as one thread finishes, activeCount  method will return a number lower than 3, and main thread
will finish its loop and interrupt all the threads. If the other threads are still waiting for its time to expire, they
will be interrupted, an exception will be thrown and they will not print their finish message.



Java programming language

Page 17 of 21

A daemon thread is a special type of thread that executes a periodic task from time to time. Their main
properties are:

They have very low priority (i.e., they run when no other "normal" thread needs to run)
Main program does not wait for them to finish. This is, if every thread of the program has finished but a
daemon thread is still running, it will be finished as well.

Due to this reason, a daemon thread should not do any critical task, because it can be interrupted at any
moment, and we do not know when it will be able to do that task. A good example of a daemon thread is the
Java garbage collector.

To create a daemon thread, we only have to call the setDaemon  method from Thread  class before
starting the thread:

Thread t = new MyThread(); 
t.setDaemon(true); 
t.start(); 

We can also use the isDaemon  method from Thread  class to check if a given thread is a daemon or not.

Every thread created by the same application share a common context. What does this exactly mean? Let's
take a look at the following example (some lines are numbered to be explained later):

6.2. Daemon threads

7. Threads, context and shared data



Java programming language

Page 18 of 21

public class ContextExample implements Runnable  
{ 
    // Reference to current thread 
    Thread t; 
 
    public void start2Threads()  
    { 
        // Create first thread 
        t = new Thread(this); 
        t.start(); 
 
        // Sleep for 5 seconds 
        try  
        { 
            Thread.sleep(5000); 
        } catch (InterruptedException e) { } 
 
        // Create second thread 
        t = new Thread(this);                  // Line #1 
        t.start(); 
 
        // Sleep for 5 seconds 
        try  
        { 
            Thread.sleep(5000);  
        } catch (InterruptedException e) { } 
 
        // Destroy thread 
        t = null;                              // Line #2 
    } 
 
    @Override 
    public void run()  
    {  
        // Take initial time in milliseconds 
        long ini = System.currentTimeMillis(); 
        while (t == Thread.currentThread())  
        { 
            System.out.println("Running thread (" + ini + ") "); 
            // Sleep for 100 ms 
            try  
            { 
                Thread.sleep(100); 
            } catch (InterruptedException e) { }  
        } 
        System.out.println("Finishing thread (" + ini + ") "); 
    } 
 
    public static void main(String[] args)  



Java programming language

Page 19 of 21

    { 
        ContextExample t = new ContextExample(); 
        t.start2Threads(); 
    } 
} 

Type or copy this code into a project. Test it and try to ask the following questions before reading their
corresponding answers:

1. What does de while  condition of run  method do?

It keeps on looping while variable t  points to the thread that is currently running. When this variable
points to another thread (it happens in Line #1), then previous thread finishes its while  loop.

2. Can there be two threads executing their run  methods at the same time?

Yes. As soon as Line #1 is executed, second thread is ready to start. It may happen that it starts before
previous thread checks its while  condition or finishes its run  method. In this case, both threads
would be executing their run  methods.

3. If the answer to previous question is yes, could those threads come into conflict with variable ini , so
that one thread overwrites the value previously written by the other?

No, ini  variable is a local variable of run  method, so each call to such method creates its own local
ini  variable. However, t  attribute is shared for all the threads created. That is why, when it changes

its value, previous thread finishes its task and new thread is associated to that variable (both threads
share the same value for t ).

4. How can we stop a thread in this example without creating a new one?

We only have to set t  attribute to null, as in Line #2.

After testing this example, we can come to some conclusions:

1. Every attribute of the same object is shared among all the threads of our application. That is why, when
main program changes the value of t attribute in previous example, both threads see that change.

2. If we call a method multiple times (for instance, run  method every time we create and start a thread),
its local variables are different in each call (they are not shared). That is why each thread on previous
example has its own ini value.

3. If we create a Thread  subclass instead of implementing Runnable  interface, each attribute of this
subclass is not shared among threads, since we instantiate every thread and thus we create its own
memory space, as we do with every instantiated object.

For instance, if we define this class:

7.1. Conclusions



Java programming language

Page 20 of 21

public class MyThread extends Thread  
{ 
   int num; 
 
   public MyThread(int num)  
   { 
       this.num = num; 
   } 
   ... 
} 

then attribute num  will be different for every instantiated thread. So if we type something like this:

MyThread t1 = new MyThread(10); 
MyThread t2 = new MyThread(20); 

Then object t1  will have its num  attribute with value 10, and t2  will have it with value 20.

We have seen that, if we use the same object in different threads (a Runnable  object or any other object),
they all share this object's data. But sometimes we will need to have an attribute that is not shared among
threads. To do this, we can use the ThreadLocal  class, that lets us specify a data type to create an attribute
of this type, and create multiple values of this attribute, each one assigned to a different thread.

For instance, if we want our threads to have their own creation date, we will do something like this:

If we want to get the value of this attribute for each thread, we will call its get  method, and if we want to
assign a new value, we will call its set  method. The initialValue  method in the code above is
executed when the attribute has no value and the thread is trying to get it. There is also a remove  method
that we can use to remove the value of this attribute from current thread.

public class MyRunnableClass implements Runnable
{ 
    private static ThreadLocal<LocalDate> creationDate = new ThreadLocal<LocalDate>()
    { 
        protected LocalDate initialValue() 
        { 
            return new LocalDate.now(); 
        } 
    } 
} 

7.2. ThreadLocal variables



Java programming language

Page 21 of 21

Then, we can have a run  method like this in our MyRunnableClass  class:

@Override
public void run()
{ 
    System.out.println("This thread was created on " + creationDate.get()); 
    System.out.println("Updating creation date..."); 
    creationDate.set(LocalDate.now()); 
    System.out.println("Now the creation date is " + creationDate.get());  
    System.out.println("Removing value..."); 
    creationDate.remove(); 
    System.out.println("Now the creation date is " + creationDate.get());  
} 

The code above will show three different dates for the same thread, one for each call to get, since we set a
new value between the first and the second call, and we remove the value after this second call.


