
Java programming language

Page 1 of 6

Now that we know what a process is, let's see how Java deals with them. In fact, there are just a few
classes and methods that we need to know, since Java is focused on threads, not on processes (every
Java main application is a thread indeed). However, there are some functionalities added that allow us
to call external programs or create processes from a Java application.

To create a process in Java, we need to get a Process object. This can be achieved by two different
ways:

Using the ProcessBuilder class. We need to create an array of strings with the name of the
program to run and its arguments, and then, call the start method.

String[] cmd = {"ls", "-l"};
ProcessBuilder pb = new ProcessBuilder(cmd);
Process p = pb.start();

Using the Runtime class. We also need to create an array of strings with the name of the
program and its arguments, and then we call the exec method with that array as a parameter.

String[] cmd = {"notepad.exe"};
Runtime rt = Runtime.getRuntime();
Process p = rt.exec(cmd);

In both cases, we are running an existing command or program in the operating system where Java is
currently running. It can be a Linux shellscript, a Windows exe file, or even another Java application
through a java command. If the program can't be found, or we do not have permission to run it, an
exception will be thrown when we try to call the start or exec methods from
ProcessBuilder or Runtime classes, respectively. This exception will be a subtype of
IOException .

Concurrent programming

Process management in Java

1. Creating processes

file:///Users/mariaconsuelorubiosanchez/Documents/GitHub/Java/java/md/en/14b.pdf

Java programming language

Page 2 of 6

try
{
 Process p = pb.start();
 ...
} catch (IOException e) {
 System.err.println("Exception: " + e.getMessage());
 System.exit(-1);
}

You may be wondering... why are there two ways of doing the same thing? Well, Runtime class
belongs to Java core since its very first version, whereas ProcessBuilder was added in Java 5.
With ProcessBuilder you can add environment variables and change the current working
directory for the process to be launched. Such features are not available for Runtime class. Besides,
there are some subtle differences between these two classes. For instance, Runtime class lets us
execute a command by passing the whole string as an argument, without dividing it into separate
arguments in an array:

Process p = Runtime.getRuntime.exec("ls -l");

Starting from Java 9, Java introduced the ProcessHandle interface, which provides more
functionalities for managing and controlling processes. With ProcessHandle , you can get
information about the process, such as its PID, and handle process termination.

ProcessBuilder pb = new ProcessBuilder("ls", "-l");
Process p = pb.start();
ProcessHandle handle = p.toHandle();
System.out.println("Process ID: " + handle.pid());
handle.onExit().thenRun(() -> System.out.println("Process exited"));

We have just learnt how to create and launch a process in Java. After calling the start or exec
method, our Java program keeps going, and it runs its next instruction. If we want it to stop until the
subprocess finishes its task, we can call the waitFor method from the Process object that we
created. This causes the main program to halt until this process is completed.

1.1. Differences between ProcessBuilder and Runtime

1.2. Using ProcessHandle (Java 9+)

2. Synchronizing processes

Java programming language

Page 3 of 6

Calling the waitFor method can throw an InterruptedException if the subprocess has been
interrupted unexpectedly. If everything is OK, then the control comes back to the Java main application
as soon as the subprocess finishes.

try
{
 Process p = pb.start();
 p.waitFor();
 ...
} catch (IOException e) {
 System.err.println("Exception: " + e.getMessage());
 System.exit(-1);
} catch (InterruptedException e) {
 System.err.println("Interrupted: " + e.getMessage());
}

Note: From Java 8 onwards, you can also use the waitFor(long timeout, TimeUnit unit)
method to specify a timeout for waiting.

The waitFor method returns an integer value. This value is usually a 0 when the process has
finished correctly, and any other number if it finished unexpectedly. So we can check the final state of a
process by comparing its return value:

int value = p.waitFor();
if (value != 0)
 System.out.println("The task finished unexpectedly");

We can finish a process that we previously created in our program by calling the destroy method.
By doing this, the Java garbage collector will free all the resources associated to that process.

ProcessBuilder pb = new ProcessBuilder(...)
Process p = pb.start();
...
p.destroy();

Note: If you need to forcibly terminate the process, you can use the destroyForcibly method,
which ensures that the process is terminated immediately.

3. Finishing processes

4. Communicating with processes

Java programming language

Page 4 of 6

A process usually needs to get some information (from the user, or from a file, for instance), and output
some results (to a file, to a screen...). In many operating systems, when a process is using a given
input/output, its children use the same input/output. In other words, if a process is reading data from a
file as its standard input, and it creates a subprocess, this subprocess will also have the same file as its
default input.

However, Java does not have such behavior. When a process is created in Java from another (parent)
process, it has its own communication interface. If we want to communicate with this subprocess, we
have to get its input and output streams. By doing this, we will be able to send data to that subprocess
from its parent process, and get its results from its parent as well.

Note: You can also use ProcessBuilder.redirectOutput and
ProcessBuilder.redirectInput to redirect the standard input and output streams of a process.

The following example gets the output of the subprocess and prints it to the screen:

Process p = pb.start();
BufferedReader br = new BufferedReader(
 new InputStreamReader(p.getInputStream()));
String line = "";

System.out.println("Process output:");
while ((line = br.readLine()) != null)
{
 System.out.println(line);
}

Using try-with-resources:

Process p = pb.start();
try (BufferedReader br = new BufferedReader(
 new InputStreamReader(p.getInputStream()))) {
 String line;
 System.out.println("Process output:");
 while ((line = br.readLine()) != null) {
 System.out.println(line);
 }
}

There is something you must know when you deal with your process data. Some operating systems
(such as Linux, Android, Mac OS X...) use UTF-8 as their encoding format, whereas other systems
(Windows) use their own encoding format. This can be a problem if, for instance, we save a text file in
Linux and we read it in Windows. To avoid these problems, we can use a second argument when

Java programming language

Page 5 of 6

creating the InputStreamReader object, to tell the JVM which is the expected encoding format for
the input:

BufferedReader br = new BufferedReader(
new InputStreamReader(p.getInputStream(), "UTF-8"));

This example creates a process to call the "ls" command (it is expected to run on Linux or Mac OS X),
with the option "-l" to have a detailed list of files and folders from current directory. Then, it captures the
output and prints it in the console (or standard output).

import java.io.*;

public class FolderListing
{
 public static void main(String[] args)
 {
 String[] cmd = {"ls", "-l"};
 String line = "";
 ProcessBuilder pb = new ProcessBuilder(cmd);

 try
 {
 Process p = pb.start();
 BufferedReader br = new BufferedReader(
 new InputStreamReader(p.getInputStream()));
 System.out.println("Process output:");
 while ((line = br.readLine()) != null)
 {
 System.out.println(line);
 }
 } catch (Exception e) {
 System.err.println("Exception:" + e.getMessage());
 }
 }
}

Exercise 1:

Create a project called ProcessListPNG with a program that asks the user to introduce a path (for
instance, /myfolder/photos), and then launches a process that prints a list of all PNG images found
in this path. Try to do it recursively (either with a command from the operating system or with your
own script).

5. Example

Java programming language

Page 6 of 6

Exercise 2:

Create a project called ProcessKillNotepad with a program that launches the notepad or any
similar text editor from your operating system. Then, the program will wait 10 seconds for the
subprocess to finish and, after that period, it will be destroyed. To sleep 10 seconds, use this
instruction:

Thread.sleep(milliseconds);

