
Java programming language

Page 1 of 33

In this document we are going to learn some advanced concepts that we need to know if we want to create
more complex applications using JavaFX.

If the user tries to close the application window with the close button of the upper bar (or typing Alt +
F4 or any other shortcut), our efforts to try to save the data before closing, or get a confirmation from the

user before exiting the program will be skipped.

But do not worry. There is a way of catching this event and redirect it to our control methods. However, we’ll
need to start the application in a different way, so we can get a reference to the controller from the main
application class. In the start method of the application (from the main class), we do something like this:

public void start(Stage primaryStage) throws Exception
{
 FXMLLoader loader = new FXMLLoader(...);
 Parent root = loader.load();

 Controller controller = (Controller)loader.getController();
 controller.setOnCloseListener(primaryStage);

 primaryStage.setTitle("Hello World");
 ...
}

We can see that once we have a reference to our controller, we can call a method that we have created and
named setOnCloseListener , passing the stage as an argument. This is how this method is implemented
in the controller:

JavaFX application development

Building complex JavaFX applications

1. Closing window event

file:///d%3A/Trabajo/Apuntes/java/md/en/slides/13c.html
file:///d%3A/Trabajo/Apuntes/java/md/en/13c.pdf

Java programming language

Page 2 of 33

public void setOnCloseListener(Stage stage)
{
 stage.setOnCloseRequest(e ->
 {
 // This way we can prevent window from closing
 e.consume();
 });
}

If we want to avoid window closing, we just use the consume method of the event, just to consume the
event with no effects. Otherwise, we can also save some data before letting the window close.

We can change the default, old fashioned appearance of our applications by adding styles through CSS
documents. This is a file type very used in web design, and we are not going to learn CSS now, since we
assume that you have an idea of what it is and how it works. We are going to see how to add these files to our
JavaFX applications.

First of all, we need to add a CSS file to our project. To do this, go to File > New, and select File. Then, create a
new file with .css extension in your source folder (inside your desired package). Then, we can add the
styles to our CSS file. There is a special naming that we need to follow in order to set the styles to the
appropriate controls. For instance, if we want to apply general styles to all the elements of the application
(such as background color, font styles...) we use the root class selector:

.root
{
 -fx-background-color: lightgray;
 -fx-font-family: "Arial";
}

Notice that every CSS style begins with the -fx- prefix, followed by the typical CSS style name
(background-color , font-family ...). There are also some other class selectors that we can use to apply
styles to some specific controls (buttons, labels...). For instance, this style is applied to every button of our
application:

.button {
 -fx-background-color: #A22E15;
 -fx-color: white;
}

We can also define our own class or id selectors, such as

2. Changing the default appearance with CSS

Java programming language

Page 3 of 33

.myButton { ... }
#myID { ... }

Then, if we want to apply these styles to some selected controls, we need to assign them the corresponding
class or id, from Scene Builder. We can also aggregate individual CSS properties there, or even attach a CSS
style sheet file to an element an its descendants. All of this can be found inside the Properties panel in the
right side, inside a CSS section.

Once we have our CSS file created, we can add it to a scene by adding it to the main (root) container of the
application (the style sheet is also applied to elements inside it).

Alternatively, we can also attach the CSS file to the scene with this line of code in the main application class’
start method (the path to the CSS file is relative to the main class package):

Scene scene = new Scene(root);
scene.getStylesheets().add(
 getClass().getResource("MyStyle.css").toExternalForm());

Here you can learn more about the official JavaFX CSS reference.

Exercise 1:

Create a project called CalculatorCSS, that will be a copy of project Calculator from previous document.
Change its default style by using a CSS file that sets the background color of the whole application to
black, the labels' text color to white, and the font family to Courier New. At the end, your application
should look like this:

http://docs.oracle.com/javase/8/javafx/api/javafx/scene/doc-files/cssref.html

Java programming language

Page 4 of 33

It is also useful to create applications with multiple views that can be easily swapped. For instance, an
application with a login screen and a main screen. Let's see how it works with an example: create a new JavaFX
project called MultipleViews. Rename default FXML file to main.fxml and create a view like this.

We'll have two other views that will be loaded from this one. We must create a new FXML file to each new
screen (call them view1.fxml and view2.fxml). Each FXML file is associated to a Controller class, that you have
to create. The other two views will look like this:

In the “Go View 1” button's action event method from main scene, we'll just need to load the FXML of the
view we want to load, and replace what is shown in the main window with that.

3. Applications with multiple views

Java programming language

Page 5 of 33

void goToView1(ActionEvent event) throws IOException
{
 Parent root = FXMLLoader.load(
 HelloApplication.class.getResource("view1.fxml"));
 Scene view1Scene = new Scene(root);
 Stage stage =
 (Stage)((Node) event.getSource()).getScene().getWindow();
 stage.setScene(view1Scene);
 stage.show();
}

As the code is mostly the same for all the views, we could create a class to manage these view changes
(maybe with a static method or using inheritance).

public class SceneLoader
{
 public static void loadScreen(String viewPath, Stage stage)
 throws IOException
 {
 Parent root = FXMLLoader.load(
 HelloApplication.class.getResource(viewPath));
 Scene viewScene = new Scene(root);
 stage.setScene(viewScene);
 stage.show();
 }
}

Then, we can use this class as shown below:

void goToView1(ActionEvent event) throws IOException
{
 ScreenLoader.loadScreen("view1.fxml",
 (Stage)((Node) event.getSource()).getScene().getWindow());
}

We can then apply the same pattern to "Go View 2" and "Back to Main" buttons. Of course we can make it a
better and more organized code, but for this example or a simple application it should be enough.

Exercise 2:

Complete the example above by adding the events to change the view in every pending button.

3.1. Loading views in different stages

Java programming language

Page 6 of 33

Sometimes it may be useful to add a scene in a different stage that pops up over current stage, so that we
can't go back to the main stage unless we close this new one. They are called modal dialogs.

In order to define a new scene (a new FXML file) in a different stage, we must do something like this:

// 1. Load FXML file for the new scene
Parent view = FXMLLoader.load(HelloApplication.class.getResource("newApp.fxml"));
// 2. Attach FXML to a new scene
Scene viewScene = new Scene(view);
// 3. Get current main stage
Stage stage=
 (Stage) ((Node) actionEvent.getSource()).getScene().getWindow();
// 4. Create a new stage with the new scene
Stage secondaryStage= new Stage();
secondaryStage.setScene(viewScene);
// 5. Set it as a modal stage and attach it to the main stage
secondaryStage.initModality(Modality.WINDOW_MODAL);
secondaryStage.initOwner(stage);
// 6. Define close event for modal stage and show it
secondaryStage.setOnCloseRequest(e -> // Do whatever);
secondaryStage.show();

Charts let us represent the information in a graphical, summarized way that is often much more
understandable than just reading a table of data. You can find some different chart types in the chart list of
Scene Builder.

To use any of them, we just drag and drop it to the scene, like we do with any other common control.
Depending on the chart type, it has some specific attributes and methods to provide the data. Here you can

4. Using charts

https://docs.oracle.com/javase/8/javafx/user-interface-tutorial/charts.htm

Java programming language

Page 7 of 33

have a look at some tutorials.

For instance, if we are working with a BarChart , we need to clarify the data type for the X axis (categories)
and for the Y axis (values). If we want to represent something like this:

Then we need to associate this BarChart element to our controller, and set an appropriate name for it (for
instance, chart). After doing this, in the controller, we need to specify the data type of the X axis
(categories) and the Y axis (numbers):

@FXML
private BarChart<String, Number> chart;

We can fill the chart with some static data, such as predefined arrays. To create every single bar, we need to
create an instance of a XYChart.Data object, and fill a XYChart.Series object with them.

Java programming language

Page 8 of 33

String[] categories = {"Programming", "Databases", "Markup languages"};
double[] marks = { 6.4, 7.2, 8.6 };

chart.setTitle("Final marks 1DAM");

XYChart.Series data = new XYChart.Series();
data.setName("Me");
for (int i = 0; i < categories.length; i++)
{
 data.getData().add(new XYChart.Data(categories[i], marks[i]));
}

chart.getData().add(data);

As you can see, we can also define a main title for the chart. You may also notice that we can add as many
series as we need. Each one will be represented with a different bar color.

Exercise 3:

This is the list of average temperatures for every month in Alicante during 2017.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

9 8 14 17 21 24 28 30 26 21 16 11

Create a new JavaFX FXML project called Temperatures and add a bar chart (BarChart control) to it to
represent this array. At the end, you should see something like this when launching the application:

Java programming language

Page 9 of 33

Apart from the list of basic controls that we can place in JavaFX applications, that have been explained in
previous document, there are some controls that need some special setup, or that are not so basic.

There is a very useful control that we can use when we work with large amounts of data, or with some
structured data that we need to keep visible at the same time: tables. This control lets us arrange the
information so that we can show different registers in different rows, and different information about the
same register in different columns.

To deal with tables, we will use the TableView control. We can define the column headers with the
TableColumn class. For instance, if we want to manage a list of books with their ISBN, title and author, we

would create a table like this one:

5. Some advanced controls

5.1. Working with tables

Java programming language

Page 10 of 33

Once we have our table created, we may need to fill it with some data that we have previously stored. It is
recommended to create a class (a public class) that stores every object of the table (every row), and associate
each column to an attribute of this class. In our previous example, if we want to work with books, we can
create a Book class with three attributes (ISBN, title and author), and their corresponding getters and
setters:

public class Book
{
 String isbn, title, author;

 public Book (String isbn, String title, String author)
 {
 this.isbn = isbn;
 this.title = title;
 this.author = author;
 }

 public String getIsbn()
 {
 return isbn;
 }

 public void setIsbn(String isbn)
 {
 this.isbn = isbn;
 }

 //... Rest of getters and setters
}

Once we have defined our object class, we can create or load a collection of books with our
FXCollections class, as we did in previous examples:

Java programming language

Page 11 of 33

ObservableList<Book> data = FXCollections.observableArrayList(
 new Book("111111", "Ender's game", "Orson Scott Card"),
 new Book("222222", "The adventures of Tom Sawyer", "Mark Twain"),
 new Book("333333", "The never ending story", "Michael Ende")
);
table.setItems(data);

Adding new rows to a TableView is as easy as adding new objects to the list associated to it. In our example,
whenever we add or remove data to our observable list (variable data), the TableView will be
automatically updated.

We can use the add method from ObservableList interface to add elements to the list:

data.add(new Book("44444", "Misery", "Stephen King"));

We can also use the remove method to remove an element (or a set of elements) from a given position (or
range). This line removes the last element of the list/table:

data.remove(data.size()-1);

In order to check which element (row) of the table is currently selected, we can use the same methods that we
used with ListView control. Typically, we will get the index of the currently selected item, and get the
whole object from the arraylist:

int index = table.getSelectionModel().getSelectedIndex();
Book selBook = data.get(index);

Setting up the columns

In order to specify the value that will be shown in each column of our table, we need to associate every table
column (apart from the table itself) with an attribute in our controller. For every TableColumn attribute we
need to define the type of items the table is going to hold (Book), and for each column, we also specify the
type of data it will show (String , Integer ,...).

Java programming language

Page 12 of 33

@FXML
private TableView<Book> table;
@FXML
private TableColumn<Book, String> colIsbn;
@FXML
private TableColumn<Book, String> colTitle;
@FXML
private TableColumn<Book, String> colAuthor;

public void initialize()
{
 // Text to show when the table is empty
 table.setPlaceholder(new Label("No items to show..."));
}

We also attach each book property to a given TableColumn object, in the initialize method.

colIsbn.setCellValueFactory(new PropertyValueFactory("isbn"));
colTitle.setCellValueFactory(new PropertyValueFactory("title"));
colAuthor.setCellValueFactory(new PropertyValueFactory("author"));

NOTE: it is important that we use the same name in the parameter of PropertyValueFactory than a
corresponding getter but without the prefix "get". For instance, if we create a method called
getTotalPrice() , we should use the name “totalPrice” in the column to show this value. In other

words, PropertyValueFactory refers to class getters, not attributes.

The DatePicker JavaFX control allows the user to select a date from a pop-up calendar that appears when
we click its button on the right.

We can access the TextField inside the DatePicker control using the getEditor() method. Once we
have access to that text field, we can get its value easily. We can also get the LocalDate object
representing the current selected date using getValue() .

// By default today is selected
datepicker.setValue(LocalDate.now());
...
LocalDate date = datepicker.getValue();

5.2. Date pickers

5.3. Adding images

Java programming language

Page 13 of 33

It is very usual to add some images to our application to make some controls (or the general appearance)
more appealing. To do this, we use the Image and ImageView classes (from javafx.scene.image
package). The first one allows us to load an image from a file. The ImageView class adapts the image
loaded to something drawable in our application.

In order to attach an Image object (loaded from a file) to an ImageView control, we can follow these
steps:

Firs of all, we need to load the image in the Image file. We can use getResource method seen in
previous documents, or getResourceAsStream , when we loaded initial FXML file in the main class. The
path to this image can be written as an absolute path from source folder's root:

Image image = new Image (
 getClass().getResourceAsStream("/sample/img/javafx.png"));

Also, we can define an absolute path from project's root folder:

Image image = new Image ("file:src/sample/img/javafx.png");

Finally, we can make use of main class' getResourceAsStream method to locate these images. For
instance, if main class is placed at package myapplication and we have the images placed in the same
package (inside resources folder), we can just do this:

Image image = new Image (MyMainClass.class.getResource("javafx.png"));

NOTE: this last example will work as long as image file is located in the same package than main class
(although they can be in different source or resource folders).

Once we have our image loaded in an Image object, we just need to set this image in the ImageView
control. For instance, if this control is associated to a variable called imgFX , we can do it like this:

imgFX.setImage(image);

To support our learning of JavaFX and Scene Builder, we’ll build a small application from scratch. This
application will have two views: one to show and edit the data, and another one to show a chart that
summarizes current data. To begin with, let's create a new JavaFX project called HealthyMenu. Rename the
default files as follows:

6. Example: HealthyMenu

Java programming language

Page 14 of 33

Default FXML file will be renamed to main.fxml
Default main application class will be HealthyMenu
Default initial controller will be MainController . Make sure FXML file has this controller associated at
every moment.

All the classes will belong to a main package called healthymenu , and the FXML will be placed in this same
package (in the resources folder). Then, follow the steps given in next subsections.

The main FXML view will have the following appearance:

To get this appearance, we can, for instance, set a vertical SplitPane as the main layout. By default, it will
have two AnchorPanes as layout managers for its two halves. That's ok for us, although we can change
them anyway.

Defining the table

At the top half of the split pane, let's add a TableView . In order to make it fit the total size of the
AnchorPane , right click on the table view and choose Fit to Parent option...

6.1. Layout for the main view

Java programming language

Page 15 of 33

The table will have four columns:

The name of a food that we have eaten. For instance, "Tomatoes", or "Milk".
The food category, that will be chosen among a pre-defined set of values: "Fruits and vegetables", "Meat
and fish", "Milk derivatives" and "Other".
The amount of food in grams.
The amount of food in ounces (oz), that will be automatically calculated from previous column.

In order to set the header of these four columns, we just need to add as many TableColumn elements to
the table as we need:

Then, we click on each TableColumn in the left panel, and change its properties in the right panel. For
instance, for the first column, we change its Text property to "Food name"...

Java programming language

Page 16 of 33

... and its fx:id property to reference it from our code:

After changing these properties for the four columns, you'll get this table:

Defining the bottom form

The bottom form will let us add food to the upper table. We will need the following form fields:

A text field to specify the food name (with its associated label)
A choice box to choose the food category (with its associated label)
Another text field to set the weight in grams (with its associated label)
A button to add the data to the table

Let's start by adding each pair of label and associated field. For the first pair (food name), we start by adding
the label, and then the text field next to it. As you can see when you move an item near others or near the
borders of a container, there are some auxiliary lines that will help you align that item with the same margin
as others or put some items in line. At the end, you should get something like this:

Java programming language

Page 17 of 33

For this example, we have associated the food name text field, weight text field, choice box and button with
these fx:ids, respectively: txtFoodName , choiceCategory , txtWeight and btnAdd . Associate each
control an appropriate fx:id and update the controller.

Now, we need to fill the choice box with the pre-defined list of possible values. First of all, specify the data
type of the choice box in the controller:

private ChoiceBox<String> choiceCategory;

Then, add these lines to the initialize method of the main controller:

choiceCategory.setItems(FXCollections.observableArrayList(
 "Fruits and vegetables", "Meat and fish",
 "Milk derivatives", "Other"));

To help the form resize with the window, first we'll have to tell the controls how to resize. It can be helpful to
wrap some controls in a HBox or VBox layout manager, in order to treat them as a whole. For instance, we
wrap the Food name label, its associated text field and the Add button in a HBox. To group them inside an
HBox, select all the controls involved (click them while pressing shift key), and in the menu select Arrange →
Wrap in → HBox. You can also activate this menu by right-clicking on the selection itself.

Java programming language

Page 18 of 33

After that, select the space (margin) that will separate the elements inside the HBox from each other (in
pixels).

We repeat these same steps for the Food category row and for the Weight row. Then, we will have three HBox
layout managers inside our AnchorPane:

We can now wrap these HBoxes inside a VBox to treat the whole form at once. Select the three HBox
containers and wrap them in a VBox, as we did before for the form controls. We can also set the vertical
spacing for this VBox.

Java programming language

Page 19 of 33

Finally, in order to let the form grow or shrink as we resize the window, select the VBox and anchor it to its left
and right borders:

If you try to resize the window now, you'll notice that labels may hide their content if they shrink too much. To
avoid this, we can set a minimum width for them:

We can also tell the input fields to grow as much as possible if we increase window width. This can be set with
these two properties:

It's time to fill our food table with some data. In order to do so, we are going to create a class called Food
in a package called healthymenu.model .

This class will have the following attributes:

Food name (String)
Food category (String)
Food weight in grams (int)

Besides, it will have a constructor to assign these values, and the corresponding getters and setters. Finally, we
will add an additional getter to calculate the weight in ounces from the grams attribute. An overridden version
of the toString method can also be helpful for later purposes:

6.2. Loading data into the table

Java programming language

Page 20 of 33

public class Food
{
 private String name;
 private String category;
 private int weight;

 public Food(String name, String category, int weight)
 {
 this.name = name;
 this.category = category;
 this.weight = weight;
 }

 public String getName()
 {
 return name;
 }

 public void setName(String name)
 {
 this.name = name;
 }

 public String getCategory()
 {
 return category;
 }

 public void setCategory(String category)
 {
 this.category = category;
 }

 public int getWeight()
 {
 return weight;
 }

 public void setWeight(int weight)
 {
 this.weight = weight;
 }

 public float getWeightInOz()
 {
 return (float)weight * 0.035274f;
 }

 @Override

Java programming language

Page 21 of 33

 public String toString()
 {
 return name + ";" + category + ";" + weight;
 }
}

Now, let's move to our main controller class. For this example we have called the TableView object
tableFood , and the corresponding columns are colFoodName , colFoodCategory , colWeightG

and colWeightOz . We need to specify the data type of these elements, so that they will be like these ones:

@FXML
private TableView<Food> tableFood;
@FXML
private TableColumn<Food, String> colFoodName;
@FXML
private TableColumn<Food, String> colFoodCategory;
@FXML
private TableColumn<Food, Integer> colWeightG;
@FXML
private TableColumn<Food, Float> colWeightOz;

We need to define a collection of Food objects to fill the table. As you have learnt in previous session,
tables use a special type of collection called ObservableList to fill the data. So we create a new attribute
of this type in the controller:

private ObservableList<Food> food;

and we can initialize it with some sample data in the initialize method.

food = FXCollections.observableArrayList(
 new Food ("Potatoes", "Fruits and vegetables", 200),
 new Food ("Chicken", "Meat and fish", 300),
 new Food ("Milkshake", "Milk derivatives", 250),
 new Food ("Salmon", "Meat and fish", 300)
);

Finally, we associate this list to the table, setting the attribute for each column (also in the initialize
method):

Java programming language

Page 22 of 33

colFoodName.setCellValueFactory(new PropertyValueFactory("name"));
colFoodCategory.setCellValueFactory(new PropertyValueFactory("category"));
colWeightG.setCellValueFactory(new PropertyValueFactory("weight"));
colWeightOz.setCellValueFactory(new PropertyValueFactory("weightInOz"));

tableFood.setItems(food);

After these steps, we should see the table this way when we launch the application:

Notice that we have associated each table column with a getter method of Food class by its name (without
the get prefix). We can still improve the appearance of the table by formatting the weight in ounces with 2
decimal numbers. To do this, we can just return a formatted String in the corresponding getter (Food class),
instead of returning just a float:

public String getWeightInOz()
{
 DecimalFormat df = new DecimalFormat();
 df.setMaximumFractionDigits(2);
 return df.format((float)weight * 0.035274f);
}

We also need to change the generics configuration of the associated table column, since now it contains a
formatted String:

private TableColumn<Food, String> colWeightOz;

Reading/Saving data from/to a file

In order to have a more professional application, let's replace our sample food list with a list read from a text
file. The text file will have the following structure:

Java programming language

Page 23 of 33

Food name;Category;Weight in grams

We can create a file called food.txt in the root folder of our project, and fill it with our sample data:

Potatoes;Fruits and vegetables;200
Chicken;Meat and fish;300
Milkshake;Milk derivatives;250
Salmon;Meat and fish;300

Then, we can create two static methods in our controller (or in a separate class, if we plan to use them
elsewhere) to read the data from the file (and return a list of food) and store the data, respectively.

private static List<Food> readFile()
{
 try
 {
 return Files.lines(Paths.get("food.txt"))
 .map(line -> new Food(line.split(";")[0], line.split(";")[1],
 Integer.parseInt(line.split(";")[2])))
 .collect(Collectors.toList());
 } catch (Exception e) {
 return null;
 }
}

private static void saveFile(List<Food> food)
{
 try(PrintWriter pw = new PrintWriter("food.txt"))
 {
 food.stream()
 .forEach(f -> pw.println(f.toString()));
 } catch (Exception e) {}
}

Notice that we rely on the toString method in the saveFile code to automatically output the string
version of the Food object. Also check how easy is to read or write a text file using functional programming
(streams and lambdas).

We can use readFile method in the initialize method, in order to fill food list (we no longer use
our pre-defined list of food in this method):

Java programming language

Page 24 of 33

food = FXCollections.observableArrayList(readFile());

Finally, we will use the saveFile method whenever we add new food to the list, as soon as we define the
event to add food in next steps.

Let's create now our secondary view. It will be a view with a pie chart and a button to go back to the main
view. Create a new FXML file in the resources folder, in the same package than the primary FXML file. Call it
chart.fxml , and create a new controller associated to it, in the same package than MainController

class, called ChartController .

Then, we edit FXML file in Scene Builder. We can use a vertical SplitPane as the main layout manager, with
the top pane greater than the bottom pane:

Add a PieChart at the top pane (and fit it to parent), and a button in the middle of the bottom pane. You
should get something like this:

6.3. The chart view

Java programming language

Page 25 of 33

In order to show this view from the main one, we need to add a new button in that main view. We can do it
under the Add button:

To finish the main behaviour of our application, we need to add three events:

An event to add a new food to the table whenever we click on the Add button, and then save the
changes into a file.
An event to change to the chart view and update its contents whenever we click on the Chart button
An event to go back to the main view when we click on the Back to Main View button

Adding new food to the table

6.4. Adding events

Java programming language

Page 26 of 33

To add new food to the table when we click on the Add button, we firstly specify the event name to be fired
when we click on the button:

Then we make the controller, and fill the code of this event handler:

private void addFood(ActionEvent event)
{
 if (txtName.getText().equals("") ||
 choiceCategory.getSelectionModel().getSelectedIndex() < 0 ||
 txtWeight.getText().equals(""))
 {
 Alert dialog = new Alert(AlertType.ERROR);
 dialog.setTitle("Error");
 dialog.setHeaderText("Error adding data");
 dialog.setContentText("No field can be empty");
 dialog.showAndWait();
 } else {
 food.add(new Food(txtName.getText(),
 choiceCategory.getSelectionModel().getSelectedItem(),
 Integer.parseInt(txtWeight.getText())));
 saveFile(food);
 }
}

As you can see, we check if there is any empty input field. If not, then we add a new Food object to the list (we
consider that the user will specify correct data into each input field), and use saveFile method defined
before to store the information in the text file.

Changing view to chart view

Whenever we want to see the chart view, we need to pass to this view the current food list. So it is a good
idea to define a public getter for this attribute in the main controller:

Java programming language

Page 27 of 33

public List<Food> getFood()
{
 return food;
}

Then, we define a new event in the Chart button to change to the chart view:

Inside the chart view controller, we go to the initialize method and define the code to get the food list
from the main controller, and then update the pie chart data from it.

private void goToChartView(ActionEvent event) throws IOException
{
 FXMLLoader loader = new FXMLLoader(HealthyMenu.class.getResource("chart.fxml"));
 Parent view1 = loader.load();
 Scene view1Scene = new Scene(view1);
 Stage stage = (Stage) ((Node) event.getSource()).getScene().getWindow();
 stage.hide();
 stage.setScene(view1Scene);
 stage.show();
}

Java programming language

Page 28 of 33

Note how we get to the main controller, get the food list and then (again) use functional programming to
easily produce a map with the categories and the sum of their corresponding weights. This is what we reflect
on the pie chart.

public void initialize()
{
 // Get the controller object to get to the food list

 FXMLLoader loader = new FXMLLoader(HealthyMenu.class.getResource("main.fxml"));

 try
 {
 Parent root = (Parent)loader.load();
 } catch (Exception e) {}

 MainController controller =
 (MainController)loader.getController();

 List<Food> food = controller.getFood();

 // Update the pie chart data from the food list data

 pieChart.getData().clear();

 // We get a map with all the categories and the sum of its weights
 Map<String, Integer> result;
 result = food.stream()
 .collect(Collectors.groupingBy(
 f -> f.getCategory(),
 Collectors.summingInt(f -> f.getWeight())
));

 // We add an entry for the pie chart with each category and its sum
 result.forEach((cat, sum) -> {
 pieChart.getData().add(new PieChart.Data(cat, sum));
 });
}

Java programming language

Page 29 of 33

Changing view to main view

Finally, we need to add an event to the Back to Main View button in the ChartController to go back to
the main view.

NOTE: we could have also used the ScreenLoader class commented in previous subsections to avoid
duplicating the code to change the view.

NOTE: every time we change the view of an application, the corresponding initialize method is
called. Keep that in mind.

We may need to update module-info.java file to be able to use current package structure:

private void back(ActionEvent event) throws IOException
{
 FXMLLoader loader = new FXMLLoader(HealthyMenu.class.getResource("main.fxml"));
 Parent view1 = loader.load();
 Scene view1Scene = new Scene(view1);
 Stage stage = (Stage) ((Node) event.getSource()).getScene().getWindow();
 stage.hide();
 stage.setScene(view1Scene);
 stage.show();
}

6.5. Modularity

Java programming language

Page 30 of 33

module healthyMenu
{
 requires javafx.controls;
 requires javafx.fxml;

 exports healthymenu.model;

 opens healthymenu;
}

In this video you have a step by step tutorial about how to implement this application. You can follow it if you
need some more help.

Exercise 4:

Update the HealthyMenu project by adding a Delete button at the bottom form, with this appearance:

When that button is clicked, it will delete currently selected row from the table (and from the associated
list and text file as well). Before deleting the row, a confirmation dialog will be shown to ask the user if
he really wants to delete the selected row.

JavaFX also provides some ways to animate our controls or nodes. Basically, what we do is to change the
properties of the nodes (size, position, color...) at regular intervals. In this process, there are two important
factors:

How much do we change the node properties. For instance, if we are moving a button, it will move faster
if we increase its X position from 3 to 3 pixels than if we increase it from 1 to 1 pixel.

7. JavaFX animations

https://youtu.be/YBZMYxBY6to

Java programming language

Page 31 of 33

The frequency of these changes. If we change the position of the button every 20 milliseconds, it will
move slower than if we change it every 10 milliseconds.

There are two ways of making an animation: one of them is totally manual, and the other is (almost) totally
automatic.

The easiest way to create an animation is by using transition classes. There are some types of transition
classes, such as TranslateTransition (to move elements), RotateTransition (to rotate elements),
FadeTransition (to change the opacity)... All these transitions have some useful methods, such as:

play / playFromStart : plays the animation from its current position or from the start, respectively
stop / pause : stops or pauses the animation, respectively.
setCycleCount : sets how many times should the animation be repeated. If we want to repeat it

indefinitely, we can use the Timeline.INDEFINITE constant.
setAutoReverse : sets if the animation should reverse every time it finishes.
setInterpolator : sets how to calculate the intermediate positions of the animation. Some of its

possible values are Interpolator.LINEAR (always at the same speed), Interpolator.EASE_IN
(faster at the beginning), Interpolator.EASE_OUT (faster at the end), Interpolator.EASE_BOTH
(default value, it means faster at the beginning and at the end)...

Apart from these common methods, there are also some particular methods that belong to each concrete
type of transition. For instance, if we use a FadeTransition , we will have to set the initial value of the
opacity, and the final value. If we use a RotateTransition , we will have to specify the initial and the final
angles.

The following example moves a label lbl from the left of the window to the right (assuming a window of
300px width), in 3 seconds.

TranslateTransition t =
 new TranslateTransition(Duration.millis(3000), lbl);
t.setFromX(0);
t.setFromY(0);
t.setToX(300);
t.setToY(0);
t.play();

In the transition constructor, we specify the duration of the transition (3 seconds), and the node or control to
which it will be applied (the label). Then, we set the initial and final values (position) of the node (label), and
the TranslateTransition object takes the control by calling its play method. In this example, we
could have omitted the lines referring to Y coordinate (t.setFromY and t.setToY methods), since we
are moving the label horizontally.

7.1. Automatic animations

Java programming language

Page 32 of 33

We can also combine some transitions to run one after the other by using the SequentialTransition
class. We add as many transitions as we need in its constructor, and then call its play method.

SequentialTransition s =
 new SequentialTransition(t1, t2, t3, t4);
s.play();

If we need to run some transitions in parallel (simultaneously), we use the ParallelTransition class, in
the same way that SequentialTransition :

ParallelTransition p = new ParallelTransition(t1, t2);
p.play();

Exercise 5:

Create a project named AnimationCredits. The window will have a black FlowPane at its bottom (use
a BorderPane as main container), and inside this FlowPane there will be a label with white text
with your name. This text must be continuously coming from the left side of the window and hiding at
the right side, like a ticker.

If we prefer to create an animation in a more manual way, we need to work with these classes:

KeyFrame , a timing interval that launches an ActionEvent every time the interval expires. We need to
specify the duration of the interval and the event handler that will control the ActionEvent.
Timeline , a sequence of KeyFrames. When we call it, each KeyFrame is played in sequence.

If we wanted to create the same animation as in previous example with these classes, we would have the
following code:

7.2. Manual animations

Java programming language

Page 33 of 33

KeyFrame kf = new KeyFrame(Duration.millis(10), e ->
{
 lbl.setTranslateX(lbl.getTranslateX() + 1);
});

Timeline t = new Timeline(kf);
t.setCycleCount(300);
t.play();

The KeyFrame will be activated every 10 milliseconds, and then it will increase the label X coordinate in 1
pixel. Finally, we add the KeyFrame to a Timeline , and set the cycle count. This value must be calculated
manually. In our example, if we want to move the label from X = 0 to X = 300 in 3 seconds, moving it 1 pixel
every 10 milliseconds, then we need a total of 300 iterations to get to X = 300.

Exercise 6:

Create a project called GrowingButton with a button in the middle (use a BorderPane), with a
preferred width of 100 pixels and a preferred height of 50 pixels (use the corresponding properties, or
the methods setPrefWidth and setPrefHeight to set these values at the beginning). Every time
we move the mouse inside the button, its width and height must grow up to 300 x 250 pixels, in 2
seconds. As soon as we move the mouse outside of the button, it must recover its initial size. Do this
animation with the manual technique.

