
Java programming language

Page 1 of 16

Now that we have learnt the basics about creating JavaFX projects and using Scene Builder, let's see the main
elements that we can include in these applications. These components can be found in the upper left panel,
inside the Containers or Controls tab, respectively.

The Stage class

When we create a JavaFX application, the main class extends the Application class, and overrides a
start method that has a Stage object as a parameter. The Stage object is a reference to the main

container of our application. This will be a window in operating systems like Linux, Windows or Mac OS X, but
it can be the full screen if our application runs on a smartphone or a tablet.

The Stage class provides some useful methods to change some features (size, behaviour...). Some of the
most useful methods are:

setTitle(String) : sets the application title (it is visible in the upper bar of the window).
setScene(Scene) : sets our application scene (where all the controls will be placed). We will learn later

that there can be more than one scene in a stage.
show : makes the application (stage) visible, and keeps on running next instructions
showAndWait : makes the application (stage) visible, and waits until it is closed before going on.
setMinWidth(double) , setMaxWidth(double) : set the minimum and maximum width

(respectively) of the window, so that we will not be able to resize it beyond these limits.
setMinHeight(double) , setMaxHeight(double) : set the minimum and maximum height

(respectively) of the window, similar to the width methods seen before.
getMinWidth , getMaxWidth , getMinHeight , getMaxHeight : get the maximum or minimum

width or height of the application.
setFullScreen(boolean) : sets if our application will run in full screen mode (so it will not be

resizable, and there will not be any upper bar), or not.
setMaximized(boolean) : sets if our application is maximized or not.
setIconified(boolean) : sets if our application is iconified (minimized) or not.
setResizable(boolean) : sets if our application is resizable or not.

You can see the full description of Stage class in the official API

For instance, with these lines inside the start method we can define the window title, and the maximum
and minimum size for our window (if we resize it):

JavaFX application development

Basic JavaFX elements

1. The Stage and Scene classes

file:///d%3A/Trabajo/Apuntes/java/md/en/slides/13b.html
file:///d%3A/Trabajo/Apuntes/java/md/en/13b.pdf
https://docs.oracle.com/javase/8/javafx/api/javafx/stage/Stage.html

Java programming language

Page 2 of 16

stage.setTitle("Hello World");
stage.setMinimumWidth(200);
stage.setMaximumWidth(500);
stage.setMinimumHeight(100);
stage.setMaximumHeight(400);

The Scene class

Every JavaFX program has (at least) one Scene object to hold all the controls of the application. When we
create it, we need to specify its main node (the one that FXMLLoader returns when we parse an FXML):

FXMLLoader fxmlLoader =
 new FXMLLoader(HelloApplication.class.getResource("hello-view.fxml"));
Scene scene = new Scene(fxmlLoader.load(), 320, 240);
stage.setScene(scene);

Then we can find some useful methods inside Scene class, such as:

getWidth , getHeight : gets the scene's current width and height
getX , getY : gets the scene's current coordinates in the screen (referring its upper left corner)
setRoot (Parent) : sets a new layout manager as the main node for this scene.

A stage can switch among multiple scenes by calling its setScene method, as we will see later. You can
learn more about the Scene class by checking its official API.

Every control that we can place in an application, such as buttons, labels and so on, must be placed inside a
container, also known as layout managers. These components let us arrange the controls in a given way, so
that we don't need to take care of placing the components in their positions manually.

Every JavaFX project that we create starts with a default root container. Depending on the IDE that we are
using, this default container can be an AnchorPane, GridPane, Vbox... Some of the most common containers in
JavaFX are:

HBox and VBox: arrange controls horizontally and vertically (respectively). These two containers have
some interesting properties in the right Properties tab, such as Spacing to automatically separate each
control from the rest.

2. JavaFX containers

https://docs.oracle.com/javase/8/javafx/api/javafx/scene/Scene.html

Java programming language

Page 3 of 16

FlowPane: arranges controls next to each other until there is no more space (vertically or horizontally).
Then, it goes to next row (or column, depending on its configuration) to keep on arranging more
controls. In a FlowPane we can control the space between elements horizontally (Hgap) and vertically
(Vgap).

BorderPane: this layout divides the pane into five regions: top, bottom, left, right and center, and we can
add a control (or a container with some controls) in each region.

AnchorPane: this layout enables you to anchor nodes to the top, bottom, left side, right side, or center
of the pane. As the window is resized, the nodes maintain their position relative to their anchor point.
Nodes can be anchored to more than one position and more than one node can be anchored to the
same position.

Java programming language

Page 4 of 16

There are other layout panes, such as GridPane (it creates some kind of table in the pane to arrange the
controls), TilePane (similar to FlowPane, but leaving the same space for each control), and so on.

Once we have chosen the appropriate container(s) for our application, we need to place the controls inside
it/them. It is important to assign an id (fx:id from the Code tab) to each control that needs to be accessed from
the Java code, so that a variable will be created in the corresponding controller.

The most common controls that we can find in many JavaFX applications are:

Labels: they display some text in the scene. Once we have put the label inside a container, there are
some useful methods in the Label class, such as getText or setText , to get/set the text of the
label.
Buttons: they let us click on them to fire some action. We can specify the text of the button either in the
constructor or with the corresponding setText method, as we do with labels.
RadioButtons: a set of buttons where only one of them can be selected at the same time. We need to
define a group (ToggleGroup class), and add the radio buttons to it. For instance, if we have three
radio buttons to choose three different colors, associated to three variables called white , gray and
black , we can add them all to a toggle group and leave one of them selected by default with the

following piece of code:

ToggleGroup colorGroup = new ToggleGroup();

white.setToggleGroup(colorGroup);
gray.setToggleGroup(colorGroup);
black.setToggleGroup(colorGroup);

colorGroup.selectToggle(white);

Checkboxes: a control that we can check and uncheck, alternatively, every time we click on it. It has the
methods setSelected and isSelected to check/uncheck it, and determine if it is currently
checked.
Text fields: Regarding text fields, the most common controls that we can use in our applications are
TextField (for short text inputs, with a single line), and TextArea (for longer texts, with several

rows and columns). There are some methods such as getText or setText to get and set the text of
the control, respectively.

There are two main types of lists that we can use in any application: ListView , with a fixed size where
some elements are shown, and dropdown lists. In this last category we can choose between ChoiceBox or

3. JavaFX controls

3.1. Some basic controls

3.2. Working with lists

http://docs.oracle.com/javase/8/javafx/layout-tutorial/builtin_layouts.htm

Java programming language

Page 5 of 16

ComboBox . Anyway, we usually use an ObservableList of items to add elements to these type of lists.

list.setItems(
 FXCollections.observableArrayList(
 "Windows", "Linux", "Mac OS X"));

We can also get current items and add values to this list:

list.getItems().addAll("Windows", "Linux", "Mac OS X");

There are also some useful methods to get the currently selected item(s), or their indexes. If we are using a
dropdown list (such as ChoiceBox or ComboBox), then we can just call getValue method to get the
currently selected value. We need to typecast it, unless we define the attribute as generic in the controller:

String value = (String)(list.getValue());

If we have a ListView get can also use getSelectionModel method to access some other additional
methods, that let us check or even change currently selected item(s) or index(es).

String element = (String)(myList.getSelectionModel().getSelectedItem());

There are some other useful methods inside getSelectionModel() , such as
getSelectionModel().getSelectedItems() (if we allow multiple selection), or
getSelectionModel().getSelectedIndex() / getSelectionModel().getSelectedIndexes() to

get the selected index instead of the value itself.

Lists of objects

If we want to put some complex objects (such as books, people and so on) in a list, we just need to override
toString method of the affected class to show the appropriate information of each control in the

corresponding list.

As in many desktop applications, we can add a menu to our JavaFX application (this is not usual when we are
developing a mobile application). The pattern that we usually follow is to put a menu bar (with default menus
inside that we can edit), define the categories (Menu), and add menu items to the categories.

3.3. Working with menus

Java programming language

Page 6 of 16

As you can see, we need to use three different elements when working with menus:

MenuBar to define the bar where all menus and menu items will be placed
Menu to define the categories for the menu items. A category is an item that can be displayed, but it has
no action (if we click on it, nothing else happens but showing the items that this category contains).
MenuItem defines each item of our menus. If we click on an item, we can define some code associated
to that action, as we will see when talking about events. In the example above we have defined a menu
item called "Close" inside File menu. There are also some MenuItem subtypes, such as
CheckMenuItem (items that can be checked/unchecked, like checkboxes), or RadioMenuItem

(groups of items where only one of them can be checked at the same time, like radio buttons). We can
also use a SeparatorMenuItem to create a separation line between groups of menu items.

All these elements are available in the Menu section in the upper left corner of Scene Builder.

Now that we know the most important containers and controls that we can use in a JavaFX application, let's
see how to use them with Scene Builder, and how to update the code related with this graphical design.

First of all, we need to choose the appropriate containers and controls and arrange them in Scene Builder. We
may need to remove any existing content, and we can do it by right clicking on the corresponding control or
container in the lower left panel (Custom tab), and choosing Delete.

Every FXML file in our JavaFX project has a controller Java class associated, so that every component in this
FXML file can be accessed from Java code. When we create a default JavaFX application, the association
between the controller class and the FXML file is automatically added in this last file:

<VBox alignment="CENTER" spacing="20.0" xmlns:fx="http://javafx.com/fxml"
 fx:controller="example.myfirstjavafxproject.HelloController">
 ...

However, if we remove the main container and place a new one, this association is lost, and we have to
manually add it. For instance, if we replace previous VBox controller with an AnchorPane, we need to add a
fx:controller attribute in it with the controller associated:

4. Placing components and updating the application

4.1. Synchronizing the controller class

Java programming language

Page 7 of 16

<AnchorPane fx:controller="example.myfirstjavafxproject.HelloController"
...

NOTE: this step must ONLY be done with the root container of our application (not with every container
that we use).

As we add controls and containers to the application in SceneBuilder, they are automatically added to the
FXML file but, in order to have them accessible from the controller Java code, we need to assign them an id
(fx:id property in the Code tab of Scene Builder).

This id will be automatically added to the FXML file, as a property of the corresponding control:

<Button fx:id="btnClic" layoutX="131.0" layoutY="141.0"
mnemonicParsing="false" text="Click me!" />

Then, we need to manually add this property to the controller class (as long as the controller is properly
attached to the FXML file, as we have explained before). To do this, we can just move the mouse over the
corresponding attribute in the FXML file, then go to the "bulb" that will be shown and choose Create field
XXX, where XXX will be the id given to our control:

4.2. Adding elements to the controller

Java programming language

Page 8 of 16

This is how our controller should look like after this change:

public class HelloController
{
 public Button btnClic;

However, the attributes of a class should be private, so we set these controls as private attributes:

public class HelloController
{
 private Button btnClic;

This last change will cause an error in our FXML file, since it can't access this private file. To solve it, we just
move the mouse over the control name, go to the red bulb on the left margin and choose Annotate field
XXXXX as @FXML.

These steps must be repeated for every control in the FXML file that needs to be accessed from the controller.

Some components need to be initialized with some default values. For instance, lists may need to be
populated with some values at the beginning. If we need to initialize some components in a JavaFX
application, then we need to make the controller implement Initializable interface:

4.3. Initializing components

Java programming language

Page 9 of 16

import javafx.fxml.Initializable;
...
public class HomeController implements Initializable

This forces us to add a new method, called initialize , where all the initialization code must be placed.
This method is called at the beginning, before showing the scene.

public class HomeController implements Initializable
{
 @Override
 public void initialize(URL url,
 ResourceBundle resourceBundle)
 {

 }
}

Usually, we don't want to use the default names provided by IntelliJ for our FXML and .java files. If you want to
rename them, it's a good choice to do it at the beginning. Just right click on the file name and choose Refactor
> Rename menu. Then, type the new name and make sure that every reference is still OK:

The name of the FXML file loaded in start method in the main class
The name of the controller associated to the FXML file

You may need to add more FXML files and controllers in a complex application, as we will see in next
document. In this case, you can decide if you place all the FXML files in the same resources folder, and all the
controller classes in the same Java package.

Exercise 1:

Create a new JavaFX project called NotepadFX with the following appearance:

4.4. Renaming components

Java programming language

Page 10 of 16

You must choose an appropriate container, and place a menu bar at the top, with the File menu
containing the specified menu items (Open, Save and Exit). Then, place a TextArea in the center and a
label at the bottom. Once you have finished placing the container(s) and controls, save your project. We
will go on with it in later sections.

Exercise 2:

Create a JavaFX project called ContactsFX with the following main window:

There is a list view on the left, and some labels, text fields and buttons on the right. Choose the
appropriate containers and controls to get a similar appearance. Save your project when you are done,
we will go on with it later.

5. Events

Java programming language

Page 11 of 16

If we only add controls to our JavaFX application (buttons, labels, text fields...) we will not be able to do
anything but clicking and typing with it. There will be no file loading, data saving, or any operation with the
data that we type or add to the application.

In order to allow our application to respond to our clicks and typings, we need to define event handlers. An
event is something that happens in our application. Clicking the mouse, pressing a key, or even passing a
mouse over the application window, are examples of events. An event handler is a method (or object with a
method) that responds to a given event by executing some instructions. For instance, we can define a handler
that, when a user clicks a given button, takes the numerical values from some text boxes, adds them and
shows the result.

Every event produced in our application is a subclass of Event class. Some of the most common types
(subclasses) of events are:

ActionEvent : typically created when the user clicks on a button or a menu item (and also when he
tabs to the button or menu item and presses the Enter key).
KeyEvent : created when the user presses a key
MouseEvent : created when the user does something with the mouse (click a button, move the

mouse...)
WindowEvent : created when the status of the window changes (for instance, it is maximized,

minimized, or closed).

Most common events (but not all) can be connected to an event handler with Scene Builder (FXML). In order
to do that, we select the element and in the right (Code tab) we will see the different event types we can bind
to a method in the controller.

We need to type the handler name in the desired event, save the changes manually add the corresponding
method to the controller (as we did for the fx:ids of the components before, going to the "bulb" and choosing
Create method... option). Then, a new event handler will appear in the code:

5.1. Main event types

5.2. Defining handlers through Scene Builder

Java programming language

Page 12 of 16

private void handleButton(ActionEvent event)
{
 // Code
}

Now, we just need to type the code associated to this handler.

We can also define our event handlers in the code of the controller. This can be typically done in the
initialize method, where every component is initialized as the application starts. Let's see some

examples.

Action event over a button

This way we could define an action event over a button whose variable name is button :

@Override
public void initialize(URL url, ResourceBundle rb)
{
 ...
 button.setOnAction(new EventHandler<ActionEvent>()
 {
 @Override
 public void handle(ActionEvent event)
 {
 // Code
 }
 });
}

Event over a list view to detect selection changes

This way we could fire an event whenever we change the currently selected item of a list view (in this case, it is
a list view of String elements):

5.3. Defining handlers by code

Java programming language

Page 13 of 16

listView.getSelectionModel().selectedItemProperty().addListener(
 new ChangeListener<String>()
 {
 @Override
 public void changed(ObservableValue<? extends String> obs,
 String oldValue, String newValue)
 {
 // "newValue" contains the new selected item
 // and "oldValue" the previously selected one
 }
 }
);

Exercise 3:

Follow the steps shown in this video to complete a project called CalculatorFX.

Exercise 4:

Create a project called CurrencyConverter that allows us to convert between three different types of
currencies: euro (EUR), dollar (USD) and british pound (GBP). There will be a menu to choose one of the
six possible combinations, by using RadioMenuItems: EUR>USD (default option), EUR>GBP, USD>EUR,
USD>GBP, GBP>EUR and GBP>USD. Below that, there will be a text field, and a label. Everytime we type
anything in the text field, the program must convert the amount automatically to the given currency,
and show the result in the label. For instance, if we have chosen EUR>GBP, and we know that 1 EUR =
0.8 GBP, then when we type "12" in the text field, the program should look like this:

To complete the application, add an ActionEvent to each RadioButtonItem that clears the text in the text
field and label, to start a new conversion with new currencies.

In order to help you finish the program, assume that the currency exchanges are as follows:

1 EUR = 1.10 USD
1 EUR = 0.8 GBP
1 USD = 0.7 GBP

Exercise 5:

Complete NotepadFX project from previous exercises by adding these events:

If we choose File > Open menu item, then the program will read a text file called "notes.txt" and
write the text in the text area. Besides, the bottom label must show how many line have been read

https://youtu.be/PJmU7EmjOKM

Java programming language

Page 14 of 16

from the text file.
If we choose File > Save menu item, the program will get the text of the text area and save it in the
notes.txt file, erasing any previous content of this file. The bottom label must show a message
indicating if the file has been successfully saved or not.
If we choose File > Exit menu item, the application will close.

Exercise 6:

Complete ContactsFX project from previous exercises with these events:

At the beginning (in the initialize method), the program will load a list of contacts from a text
file called "contacts.txt" (create a Contact class for this purpose) and show it in the left list view.
Whenever we select any contact from the list view, his information will be shown in the
corresponding text fields of the right part of the window.
If we click on the Add button, then a new Contact with the information of the text fields will be
created, and added to the list. Also, the new contacts list will be saved in "contacts.txt" file, erasing
any previous contents of the file.
If we click on the Remove button, then the currently selected contact from the list (if any) will be
removed, and the corresponding text file will be updated.

Since JavaFX 8 (or rather, since JavaFX version 8u40) there are some built-in dialogs available for JavaFX. Some
of them show information messages or confirmation dialogs. Most of these dialogs can be built from the
Alert class. It has methods to define the dialog title, header and content, although all these messages are

optional. The basic usage of this class is to show basic messages, such as error messages, or information
messages.

Alert dialog = new Alert(AlertType.ERROR);
dialog.setTitle("Error");
dialog.setHeaderText("Error loading data");
dialog.setContentText("File 'data.txt' not found");
dialog.showAndWait();

We can change the parameter of the constructor (AlertType.ERROR) for any other constant from
AlertType class, such as CONFIRMATION , WARNING , INFORMATION ... If we use a CONFIRMATION

dialog, then two buttons will be shown:

6. Using dialogs

Java programming language

Page 15 of 16

Alert dialog = new Alert(AlertType.CONFIRMATION);
dialog.setTitle("Confirmation");
dialog.setHeaderText("");
dialog.setContentText("Are you sure you want to close the application?");
Optional<ButtonType> result = dialog.showAndWait();

if (result.get() == ButtonType.OK)
 // Code for "OK"
else
 // Code for "Cancel"

If we choose the "OK" button, then a value will be returned. Otherwise (if we click on the cancel button, or we
close the dialog), no value will be returned. We can store this in an Optional value to check the
confirmation result.

Another built-in dialog since JavaFX 2.0 is the FileChooser dialog. We use it to display a dialog box to
make the user choose a file to open/save data from/into. To use this dialog, we can just add these lines to our
code:

FileChooser fileChooser = new FileChooser();
fileChooser.setTitle("Open Resource File");
File selectedFile = fileChooser.showOpenDialog(stage);

There is also a showSaveDialog method to let the user save some data into a file, and some other useful
methods (check the API for more details).

There are also some other built-in dialogs that may be useful. For instance, we can customize the confirmation
dialog with more buttons, and we can create some other dialog types, such as text input dialogs (with
TextInputDialog class, to ask the user to introduce some text), or choice dialogs (with ChoiceDialog

class, to make the user choose among a list of options). You can look for more examples here.

Exercise 7:

Improve NotepadFX project by adding a FileChooser dialog to let us choose the file to be read or saved
from the application, when we choose File > Open and File > Save menu items, respectively.

6.1. Dialogs for file choosing

http://code.makery.ch/blog/javafx-dialogs-official/

Java programming language

Page 16 of 16

Exercise 8:

Improve ContactsFX project by adding some alerts:

Show an error alert if we try to add a new contact with some empty field.
Show an information alert if the contact has been successfully added to the list.

