
Java programming language

Page 1 of 9

JavaFX is a set of Java packages that lets us create a wide variety of graphical user interfaces (GUI), from the
classical ones with typical controls such as labels, buttons, text boxes, menus, and so on, to some advanced
and modern applications, with some interesting options such as animations or perspective.

If we look backwards, we can see JavaFX as an evolution of a previous Java library, called Swing, that is still
included in the official JDK, although it is becoming quite obsolete, and the possibilities that it offers are much
more reduced. That is why now most of the Java desktop applications are being developed with JavaFX. At the
beginning, it was distributed as an additional library that we needed to add to our projects. In Java version 8 it
was included in Java core, but from version 11 it is, again, a separate library. So we need to download it and
link it to our projects. However, it can be integrated with some of the most popular Java IDEs, such as Eclipse,
NetBeans or IntelliJ. This allows us to:

Create JavaFX applications directly from our preferred IDE.
Run our JavaFX programs on any device that runs Java 8+ applications (desktops, laptops, tablets, mobile
phones...)

IMPORTANT NOTE: the steps explained in this section are updated to IntelliJ version 2021.2.1. These
steps are different in earlier versions, and may differ in future versions until we update the contents
again. We apologize for this inconvenience, but this is one of the drawbacks of working with JavaFX in
many IDEs. In this section you can find some tricks to work with previous versions, although it is harder
to set up a JavaFX project this way.

The first step to deal with a JavaFX application is to create a new project of type JavaFX. You will see a dialog
like this:

JavaFX application development

First steps with JavaFX

1. Creating a JavaFX project in IntelliJ

file:///d%3A/Trabajo/Apuntes/java/md/en/slides/13a.html
file:///d%3A/Trabajo/Apuntes/java/md/en/13a.pdf

Java programming language

Page 2 of 9

Some of the options in the dialog are self-explanatory, but some others may be confusing:

Name and Location refer to the IntelliJ project's name and location, as you have done in many other
Java applications.
In Language you can choose your project language. In this case we choose Java.
Build system refers to the dependency manager that you want to use. A dependency manager is a tool
that automatically downloads and incorporates to our project every external dependency, like JavaFX in
our case. You can choose between Maven and Gradle, which are the most important Java dependency
managers nowadays. You can leave Maven as your default manager.
Test framework lets you choose the test library for your application. JUnit is maybe the most popular
one, so you can leave this option, although we are not going to use it in this unit.
Group refers to a package name which will group your whole project. In the image above we have
specified a group example. This means that, if our project is called MyFirstJavaFXproject, then the main
package will be called example.myfirstjavafxproject . You can leave this field empty if you don't
want to add an additional package to group your project.
Artifact usually corresponds to the project name. It can be used to generate artifacts, such as JAR files
containing the application.
Project SDK points to the JDK version that you are going to use (automatically detected, usually).

After following these steps, a new JavaFX project will be created with this project structure:

1.1. JavaFX project structure

Java programming language

Page 3 of 9

.idea folder contains specific configuration files for the IntelliJ project. We don't need to care about this
folder, usually.
src folder contains all the source files of our project. It contains a main subfolder with two sections in it:

java is the main source folder (that's why it is represented in blue). Inside this folder we will place all
the Java packages of our application. By default, the contents are placed in the main package, which
consist in your group name (specified when creating the project) followed by your project name
(example.myfirstjavafxproject in our case).
resources contains all the additional resources for our project that are not source files. In this case,
there's a FXML added to the same package than our source files. This lets us separate the code of
our application from the design and additional elements, such as images.

target folder contains the generated output when we compile or build the project

Java programming language

Page 4 of 9

External Libraries contains all the libraries required for this project. They are automatically added by
Maven.

Let's have a look at some of the files contained in the project structure that have a special role:

pom.xml file, located at project's root folder, is the Maven configuration file. This contains all the
references to external libraries, such as JavaFX, including versions required. All the required libraries
included in this Maven configuration file are automatically added to the External Libraries section, at the
end of the project, and we don't need to care about them.
Inside resources folder there's an FXML file that contains the elements of our application. This FXML file
can be edited manually from IntelliJ, or using a tool called Scene Builder that we will see later. This way,
we can add buttons, labels, text fields and many other components to our application.
Inside java folder there's a package with two Java files: one of them is the main application that will be
run, and the other one is a controller, which is associated with the FXML file contained in the resources
folder.
module-info.java is a Java modules configuration file, which is located in the main source folder (java
folder, in this case). It contains a reference to the external libraries required in the code of our
application, and the elements of our application that need to be open and/or exported in order to run
them. These are the default contents of this file:

module example.myfirstjavafxproject {
 requires javafx.controls;
 requires javafx.fxml;

 opens example.myfirstjavafxproject to javafx.fxml;
 exports example.myfirstjavafxproject;
}

If everything is properly set up, we can run the sample project that has been created. The first time we need to
right click on the main class (HelloApplication) and choose Run from the context menu. From this point
on, we can just click on the green arrow button in the upper right part of the window to run this same file
again.

If you pay attention to this main class, it's a subtype of JavaFX's Application class.

1.2. Important files in the project

1.3. Running the project

Java programming language

Page 5 of 9

import javafx.application.Application;
import javafx.fxml.FXMLLoader;
import javafx.scene.Scene;
import javafx.stage.Stage;

import java.io.IOException;

public class HelloApplication extends Application
{
 @Override
 public void start(Stage stage) throws IOException
 {
 FXMLLoader fxmlLoader =
 new FXMLLoader(HelloApplication.class.getResource("hello-view.fxml"));
 Scene scene = new Scene(fxmlLoader.load(), 320, 240);
 stage.setTitle("Hello!");
 stage.setScene(scene);
 stage.show();
 }

 public static void main(String[] args)
 {
 launch();
 }
}

As you can see, the application transforms our FXML view into a Java object (the main scene node containing
all the other nodes from the scene), and puts that into a Scene object which will be shown by the Stage object
(main window).

NOTE: see how the FXML file is loaded into the application through
HelloApplication.class.getResource method. This instruction will be really useful to load any

additional resource from resources folder into our application in later documents.

Scene Builder is an external tool that can be integrated into IntelliJ to create our JavaFX graphical user
interfaces (GUI). This tool lets us edit FXML files, making interface design much faster, and keeping the view
separated from the rest of the code.

In order to use Scene Builder integrated with our IntelliJ IDE, we must double click on the FXML file that we
want to edit. In the main area, we can switch between the text mode (in which we will just see the FXML
contents) or the graphical mode through Scene Builder tab. This is what you see from the Text tab:

2. Understanding Scene Builder

2.1. Using Scene Builder integrated with IntelliJ

Java programming language

Page 6 of 9

<?xml version="1.0" encoding="UTF-8"?>

<?import javafx.geometry.Insets?>
<?import javafx.scene.control.Label?>
<?import javafx.scene.layout.VBox?>

<?import javafx.scene.control.Button?>
<VBox alignment="CENTER" spacing="20.0" xmlns:fx="http://javafx.com/fxml"
 fx:controller="example.myfirstjavafxproject.HelloController">
 <padding>
 <Insets bottom="20.0" left="20.0" right="20.0" top="20.0"/>
 </padding>

 <Label fx:id="welcomeText"/>
 <Button text="Hello!" onAction="#onHelloButtonClick"/>
</VBox>

If you choose the Scene Builder tab, Scene Builder plugin will be opened with a default initial view. The first
time that we click on this tab we may be asked to install Scene Builder kit, along with JavaFX components in
IntelliJ:

After clicking in the link(s) to download the required software, you may see something like this:

Java programming language

Page 7 of 9

You can install Scene Builder as a standalone application (apart from IntelliJ) if you feel that IntelliJ plugin is
not working properly. Here is the official link to install it. Make sure that you choose the appropriate version,
depending on your current JDK and JavaFX versions.

If you want to use this standalone application instead of the IntelliJ plugin, you just have to right click on the
FXML file from IntelliJ and choose the option Open in Scene Builder from the context menu.

The first time it may ask you to enter the path to the Scene Builder application, which is something like
C:\Users\YourUserName\AppData\Local\SceneBuilder in Windows. If you choose to work with this standalone
version of Scene Builder, remember to save the changes from Scene Builder (menu File > Save) so that you
can see them updated in your IntelliJ project.

2.2. Using Scene Builder as a standalone application

http://gluonhq.com/labs/scene-builder/

Java programming language

Page 8 of 9

At the top left part of the application, we have the JavaFX components that we can include in our application.
They are divided into some categories, such as containers, controls, menus and so on. We will learn more
about these categories in later documents, but with this panel we can find the element we are looking for.

At the bottom left, you'll see the scene's object's hierarchy. There you can also drag the elements and control
which elements are inside other elements.

At the right part of the application you'll find the current selected object's inspector from which you'll be able
to change its properties (visual and code).

From the Properties tab you can change the text inside the element (for instance, the text of a label or a
button), colors, text alignment, font type and size and so on.
From the Layout tab you can change the padding and margin of the element, along with the anchor
point, this is, the point of the main container to which the element is anchored, so that if we resize the
window, the element will keep the same distance with the chosen anchor point(s).
From the Code tab you can specify the id of the object (fx:id) to be used in the controller's code, and the
method which will be called when an event (example: action on a button) is triggered for that object.

2.3. Scene Builder main window

Java programming language

Page 9 of 9

If you want to add any component to the application, you just need to drag it over the main Scene Builder
area, and place it at your desired position. In next documents you will learn about the different components
that you can use in JavaFX applications, and how to arrange them properly.

