
Java programming language

Page 1 of 8

Since Java 8, lambda expressions, also called anonymous functions in many languages, are an easy and fast
way to implement an interface method without having to create a new class for doing that. In this document
we are going to explain what they are, how to implement them and how to use them.

In previous documents we have explained what functional interfaces are: they are interfaces with just one
method to be implemented. In the Java API documentation, these interfaces are usually tagged with the
annotation @FunctionalInterface to let the developer know that this interface is functional.

There are many useful examples of functional interfaces in Java API, such as:

Comparator , that we can use to define a comparison method to sort a collection of objects
Predicate , that can be used to filter a sublist of objects that meet some criteria
Consumer , that can be used to process each object of a collection in a given way

...

Lambda expressions are an easy way to implement these interfaces, without having to define a new class, or
even an anonymous class.

Lambda expressions can be seen as single use functions. We implement a functional interface at the point
where we need to use it, and then this code is left aside. Let's see how to define these expressions with some
examples.

java.io.FileFilter is a functional interface available in Java core API. It defines a method called
accept so that we can define an acceptance criteria for files. In other words, when we implement this

method, we must specify which files will be accepted from a list of files, according to one or many factors: file
size, extension...

Functional programming

Using lambda expressions

1. Functional interfaces and lambda expressions

2. Defining lambda expressions

2.1. A first example: java.io.FileFilter

file:///d%3A/Trabajo/Apuntes/java/md/en/slides/11b.html
file:///d%3A/Trabajo/Apuntes/java/md/en/11b.pdf

Java programming language

Page 2 of 8

public interface FileFilter
{
 boolean accept(File file);
}

We are going to implement this interface to accept only Java files (i.e. files with .java extension). We will
see how to do this in different Java versions, so that you can compare the evolution of these programming
patterns.

Implementation before Java 7: normal class

Before Java 7, we had to create a new class for every new implementation we wanted to define. For example:

public class JavaFileFilter implements FileFilter
{
 @Override
 public boolean accept(File file)
 {
 return file.getName().endsWith(".java");
 }
}

And then use it like this:

File dir = new File("/home/arturo");
File[] javaFiles = dir.listFiles(new JavaFileFilter());

Implementation in Java 7: anonymous class

Besides using normal classes, since Java 7 we could create anonymous classes implementing interfaces or
extending abstract classes, whose methods are implemented when we create the object (we could make
different implementations every time).

Java programming language

Page 3 of 8

File dir = new File("/home/arturo");
File[] javaFiles = dir.listFiles(new FileFilter()
{
 @Override
 public boolean accept(File file)
 {
 return file.getName().endsWith(".java");
 }
});

Implementation since Java 8: lambda expression

Besides normal and anonymous classes, since Java 8, when we are implementing a functional interface, we can
do it with less code using a lambda expression:

File dir = new File("/home/arturo");
File[] javaFiles=dir.listFiles((File file) -> file.getName().endsWith(".java"));

We don't have to specify that it's a FileFilter interface what we are implementing because the compiler
knows that the listFiles() method needs a FileFilter object as an argument. We don't need to use
the return word either, because the compiler will assume it. We can even omit the parameter type because
the compiler can look at it in the interface definition. So the lambda expression can be even more simple, like
this:

File[] javaFiles = dir.listFiles(file -> file.getName().endsWith(".java"));

Comparator interface from java.util package is another functional interface. It has only one method
called compare that takes two objects as parameters, and compares them returning an integer that tells us
which object comes first. Let's see how to implement this comparator to compare two String objects
according to their length.

Implementation before Java 7

If we are using Java 6 or earlier versions, we need to define a normal class that implements the interface, and
then create an object of this class and use it whenever we need to compare strings. For instance:

2.2. Another example: java.util.Comparator

Java programming language

Page 4 of 8

public class MyStringComparator implements Comparator<String>
{
 @Override
 public int compare(String s1, String s2)
 {
 return Integer.compare(s1.length(), s2.length());
 }
}

// MAIN
List<String> list = Arrays.asList("Hello", "Hi", "Goodbye", "Farewell", "Bye");
MyStringComparator msc = new MyStringComparator();
...
Collections.sort(list, msc);

Implementation in Java 7

If we are using Java 7, we can also use an anonymous class to implement the interface, this way:

// MAIN
List<String> list = Arrays.asList("Hello", "Hi", "Goodbye", "Farewell", "Bye");
Comparator<String> comp = new Comparator<String>()
{
 @Override
 public int compare(String s1, String s2)
 {
 return Integer.compare(s1.length(), s2.length());
 }
};
Collections.sort(list, comp);

Implementation in Java 8

Finally, if we are using Java 8 or later, we can also use a lambda expression. In this case, the method to be
implemented has two parameters, so we define both in the parentheses of the lambda expression:

Comparator<String> lComp = (s1,s2) -> Integer.compare(s1.length(), s2.length());
List<String> list = Arrays.asList("Hello", "Hi", "Goodbye", "Farewell", "Bye");
Collections.sort(list, lComp);

We can even shorten this code placing the lambda expression as the second parameter of
Collections.sort method:

Java programming language

Page 5 of 8

List<String> list = Arrays.asList("Hello", "Hi", "Goodbye", "Farewell", "Bye");
Collections.sort(list, (s1,s2) -> Integer.compare(s1.length(), s2.length()));

You will use this interface when talking about threads and multithreaded programming. It has only one
method to implement, with no parameters nor return type. It is used in Thread objects to define the
method these threads will execute.

Implementation before Java 7

In versions earlier than Java 7, as usual, we need to define a class that implements the interface, and then use
an object of this class:

public class MyRunnable implements Runnable
{
 @Override
 public void run()
 {
 for(int i = 0; i < 3; i++)
 {
 System.out.println("This is thread: " +
 Thread.currentThread().getName());
 }
 }
}

// MAIN
Runnable run = new MyRunnable()
Thread t = new Thread(run);
t.start();

Implementation in Java 7

In Java 7, we can define an anonymous class whenever we want to implement the interface:

2.3. One more example: java.lang.Runnable

Java programming language

Page 6 of 8

// MAIN
Runnable run = new Runnable()
{
 @Override
 public void run()
 {
 for(int i = 0; i < 3; i++)
 {
 System.out.println("This is thread: " +
 Thread.currentThread().getName());
 }
 }
};
Thread t = new Thread(run);
t.start();

Implementation in Java 8

If we use Java 8 or later, we can also use a lambda expression. In this case, as the method has no parameters,
we leave the parentheses of the lambda expression empty (we need to type the parentheses anyway):

Runnable lambdaRun = () -> {
 for(int i = 0; i < 3; i++)
 {
 System.out.println("This is thread: " +
 Thread.currentThread().getName());
 }
};
Thread t = new Thread(lambdaRun);
t.start();

Note that, in this example, our code needs more than one sentence, so we need to use the curly brackets { … }
after the arrow of the lambda expression. Again, we can also define the lambda expression in the parameter
of Thread constructor:

Thread t = new Thread(() -> {
 for(int i = 0; i < 3; i++)
 {
 System.out.println("This is thread: " +
 Thread.currentThread().getName());
 }
});
t.start();

Java programming language

Page 7 of 8

When we want to use a lambda expression, we only have to focus on the implemented method, and check:

The input parameters of the method
The value returned (if any)

Then, in the place of our application where we want to use the lambda expression, we define an object of the
given interface, and define the lambda expression as follows:

First, we specify the input parameters of the function, separated by commas, and between parentheses
(unless there's only one parameter)
Then we type an arrow (->). That's why these expressions are also called arrow functions.
Finally, we write the code of the method. If it's just a simple return , we don't need to use curly braces
{ … } . Otherwise, these curly braces are compulsory.

Remember the way we have created the lambda expression for Comparator (two parameters, a String
returned):

Comparator<String> lComp = (s1,s2) -> Integer.compare(s1.length(), s2.length());

and the way we have created the lambda expression for Runnable (no parameters nor return type):

Runnable lambdaRun = () -> {
 for(int i = 0; i < 3; i++)
 {
 System.out.println("This is thread: " +
 Thread.currentThread().getName());
 }
};

Some more concepts we can take into account

There is a way to make a lambda expression even shorter. When it contains a method call that takes the same
parameters as the lambda expression and in the same order, we can just write a reference to that method,
omitting even the parameters, using this especial syntax:

// Normal version
Comparator<Integer> comp = (i1, i2) -> Integer.compare(i1, i2);
// Shorter version
Comparator<Integer> comp2 = Integer::compare;

2.4. Conclusions

Java programming language

Page 8 of 8

We mentioned at the beginning of this section that lambda expressions are also called anonymous functions.
If we use an anonymous class to implement an interface, then the compiler creates a whole object to deal with
its methods. However, when working with lambda expressions, the compiler doesn't create full objects, but
instead it creates a special and lighter type of object, so it's usually a better choice.

Exercise 1:

Create a project called BookComparators, with a Book class to store some information about books
(title and price). Then, in the main program, create a list of books and use lambda expressions to sort
and print the list by title (in alphabetical, ascending order) and then by price (in descending order).

Exercise 2:

Create a project called ListFilter that includes the following:

A class called Student that has these properties (getters/setters when necessary): name, age and
a list of subjects (as strings).
A Main class with a main method and also a static method called:

List<Student> filterStudents(List<Student> srcList, Predicate<Student> predicate)

The filterStudents method receives a student list and returns another list with only the items
which meet the condition defined in the Predicate . A Predicate is a functional interface that
needs to implement a method (boolean test(T t)). Implement it using lambda expressions.

In the main method you'll have to create a list of at least 8 students, and then, using filterStudents
method, generate 3 other lists that only hold students who:

Are older than 20.
Have the "Programming" subject.
His name contains "Peter".

