
Java programming language

Page 1 of 9

Once the unit tests have been designed and run, it's time to start integrating the different components of the
application. This is when continuous integration can come into scene...

Continuous integration is a testing methodology that automatically launches a set of tests every time we try
to integrate or join the components of an application. This way, every time we make a change in our project
and upload the changes, a tool is in charge of launching the tests that we have defined (typically unit tests for
each component) and determine if anything is going wrong. This methodology can also be helpful in a team
environment, so whenever a team component uploads changes to a common repository, tests are
automatically launched and every team member can notice if anything goes wrong.

There are several tools that we can use in order to include continuous integration features in our projects. For
instance:

GitHub Actions is a tool integrated with GitHub that lets us perform this integration tasks automatically.
Travis CI is an external, open source tool that can be integrated with GitHub so that we can choose
which project(s) are included in the continuous integration process.
Jenkins is another external CI tool written in Java that can also be integrated with GitHub and some
other control version tools.
Circle CI is another external CI tool that can be integrated with some version control software, such as
GitHub.

Some of these tools offer a limited free account that let us perform some integration tests per month. For the
purpose of this session, we are going to rely on Circle CI as our preferred tool.

Most of the tools mentioned above use some default configuration files based on some dependency
manager. A dependency manager is a tool that automatically looks for dependencies or external resources
needed in a project to compile and/or run. Regarding Java projects, we can mention Gradle or Maven as some
of the most relevant dependency managers.

In order to ease the continuous integration in a remote, shared repository, we should create our Java project
based on some of these dependency managers. In our case, we are going to use Gradle in the example shown

Software testing

Integration tests and continuous integration

1. Principles of continuous integration

1.1. Tools for continuous integration

1.2. Using a dependency manager: Gradle

file:///d%3A/Trabajo/Apuntes/java/md/en/slides/10c.html
file:///d%3A/Trabajo/Apuntes/java/md/en/10c.pdf

Java programming language

Page 2 of 9

in this session. So we create a new IntelliJ project and choose Gradle in the first section of the project wizard:

For the purpose of this session, let's create a project called SampleCITest. When we finish creating the project,
Gradle will automatically build it for the first time (it may take a few seconds/minutes).

As you can see, Gradle automatically adds a src folder to include our source files, with a subfolder called main
for the main source code and a test subfolder to automatically place the test classes.

Now, let's add a new package called data in the src/main/java subfolder, with a Person class inside with
this code:

Java programming language

Page 3 of 9

package data;

public class Person
{
 private String name;

 public Person(String name)
 {
 this.name = name;
 }

 public String getName()
 {
 return name;
 }
}

Next, click on the class name and press Alt + Enter to create the associated test:

As you can see, in this case JUnit is automatically included in the project, and we only need to choose the
method(s) for which we need to define the tests (getName method in this case).

The new test class will be automatically added to src/tests/java subfolder. We can fill the code of the test
method with something like this:

Java programming language

Page 4 of 9

package data;

import org.junit.jupiter.api.Test;

import static org.junit.jupiter.api.Assertions.*;

class PersonTest
{
 @Test
 void getName()
 {
 Person p = new Person("James");
 assertEquals("James", p.getName());
 }
}

Our project is now ready to be uploaded to a CI environment. Let's go on.

As we have said before, we are going to use Circle CI as our CI tool. First of all, we need to sign up in Circle CI
home page and enable this tool in our GitHub account. Then, we can easily upload our Java projects with their
tests included, and see how it works.

First step in order to use Circle CI is to sign up in its official web page, using our GitHub account.

2. Using continuous integration with Circle CI

2.1. Circle CI setup

https://www.circleci.com/signup

Java programming language

Page 5 of 9

Then, we need to allow CircleCI from our GitHub account to access our repositories (either public ones, or all
of them).

NOTE: this first step must be done only once, the first time we need to associate our GitHub account
with Travis. Then, every repository that we want to include in our continuous integration flow can be
automatically added.

If we want to add any project to a continuous integration flow, we just need to follow these steps.

Create the project

We have already done this step with IntelliJ and Gradle. But, before going on, we could also include a Circle CI
configuration file in our project, just to ease next steps. Create a directory called .circleci in the root
folder of the project, and include a config.yml inside this folder like the one that you can get here.

2.2. Adding new projects to our CI flow

file:///d%3A/Trabajo/Apuntes/java/resources/en/config_yml.zip

Java programming language

Page 6 of 9

This .yml file tells Circle CI how it should compile the project and run the tests using Gradle.

Upload the project to GitHub

Here you can see how to do it but, to sum up, we need to go to VCS > Share project on GitHub, and then
choose the repository name (we may need to enter our credentials if we haven synchronized IntelliJ wigh
GitHub yet).

You will be asked to do an initial commit and push with the files of the project.

Setup project in Circle CI

Then, go to Circle CI projects page of your account and choose the project you want to manage.

Click on the Setup Project button, and choose the Fastest option. As you have manually added the
config.yml file to your project, Circle CI should automatically detect this file in the master branch.

https://nachoiborraies.github.io/entornos/md/en/05d#3-using-git-in-intellij
https://app.circleci.com/projects/

Java programming language

Page 7 of 9

And that's all. Now your continuous integration process is ready. In the Dashboard of Circle CI you can see the
history of all the tests performed:

Whenever we make any change to the project, or add new tests, Circle CI will automatically launch them, so
you will see a new entry in the dashboard. For instance, let's add this new assertion to the getName test
method. Notice that this assertion will make the test fail:

2.3. Making changes to the project

Java programming language

Page 8 of 9

package data;

import org.junit.jupiter.api.Test;

import static org.junit.jupiter.api.Assertions.*;

class PersonTest
{
 @Test
 void getName()
 {
 Person p = new Person("James");
 assertEquals("James", p.getName());
 assertEquals("John", p.getName());
 }
}

Commit and push the changes to GitHub (from Git > Commit menu, choosing the Commit and Push button):

Now you can see these new tests running automatically on Circle CI dashboard:

Java programming language

Page 9 of 9

Also, you will get an e-mail to your GitHub account every time a continuous integration is launched and failed,
so you can see the results. Besides, these results are also available from GitHub. If you choose the appropriate
repository and branch (master, in our case), you will see an icon next to the last commit information (red if any
test has failed, green if everything is OK):

If we don't want to include Circle CI features in a project any longer, we go back to the projects section in
Circle CI web site and choose Unfollow project

Exercise 1:

Follow the steps shown in this section to create the SampleCITest project with the Person class.
Upload the initial version of the project to GitHub (including config.yml file for Circle CI) and then
add new changes to both Person and PersonTest classes to include new methods and tests (for
instance, the setName method). See how the Circle CI dashboard automatically updates with every
new test that you include in the project.

