
Java programming language

Page 1 of 10

   

Once the test cases have been designed, we start testing our application. In our case, we are going to use
JUnit, a Java library for unit testing that also shows test reports that help us decide if we need to change the
original code or not.

For instance, let's create a new Java project called PersonTest . Then, create a new package called
person.types  and place this Person  class in it:

Software testing

Unit tests in Java using JUnit

1. Creating the test folder

file:///d%3A/Trabajo/Apuntes/java/md/en/slides/10a.html
file:///d%3A/Trabajo/Apuntes/java/md/en/10a.pdf


Java programming language

Page 2 of 10

package person.types; 
 
public class Person
{ 
    protected String name; 
    protected String idCard; 
 
    public Person() 
    { 
        name=""; 
        idCard=""; 
    } 
 
    public Person(String name,String idCard) 
    { 
        this.name=name; 
        this.idCard=idCard; 
    } 
 
    public String getName() { 
        return name; 
    } 
 
    public void setName(String name) { 
        this.name = name; 
    } 
 
    public String getIdCard() { 
        return idCard; 
    } 
 
    public void setIdCard(String idCard) { 
        this.idCard = idCard; 
    } 
 
    @Override 
    public boolean equals(Object p) 
    { 
        return (this.idCard.equals(((Person)p).idCard)); 
    } 
 
    @Override 
    public String toString() 
    { 
        return name + " " + idCard; 
    } 
} 



Java programming language

Page 3 of 10

Now, we are going to learn how to create a unit test associated to this class, and define some test cases. First
of all, it is recommended to create an additional source folder to place all our tests in, so that we don't mix
them with the original source code. We can create a new directory called tests  and right click on it, then
we choose Mark Directory as > Test Sources Root.

From now on, every test that we create will be automatically placed inside this source folder, with the same
package name than the class that is being tested.

In order to create a new unit test over Person  class, place the cursor in the class name to be tested
( Person , in our case) and press Alt  + Enter . In the context menu, choose Create test.

Then, a new dialog will appear to specify the contents of this unit test:

2. Creating test classes



Java programming language

Page 4 of 10

In the dialog that will be shown, we can:

Specify JUnit version. We will use the last one, which is version 5, and it corresponds to JUnit Jupiter. If a
message appears indicating that JUnit 5 library not found in the module, we can press the Fix button and
automatically download and add the library to the project:

We can also change the test class name and/or package name for this test class (although it is not
recommended, nor usual)
Finally, we can also choose which methods from the original class are going to be tested. We don't need
to check any method now if we don't know which one(s) we need to test. We can add as many as we
want later.

So, for now, we leave the default options of this dialog and click on the OK button. A new class called
PersonTest  has been created in the person.types  package inside the tests  source folder.



Java programming language

Page 5 of 10

Now, let's try to define a test method. For instance, let's create a test method for the getName  method of
Person  class. To do this, we go again to Person  class name, press Alt  + Enter  keys, and then

choose the method(s) that we want to add to the test:

IntelliJ will ask us to confirm that we want to update existing test class, then we can proceed. Any old content
of this class will be preserved, and then new method(s) will be added.

package person.types; 
 
import org.junit.jupiter.api.Test; 
import static org.junit.jupiter.api.Assertions.*; 
 
class PersonTest  
{ 
    @Test 
    void getName() 
    { 
    } 
} 

In order to test this method, we can, for instance, create a new Person  object with a given name, and then
check if this name is the one that we expect. For this checkings, we can use assertXXXXX  methods that are
available through static import of org.junit.jupiter.api.Assertions  package:

3. Adding test methods to the test class



Java programming language

Page 6 of 10

package person.types; 
 
import org.junit.jupiter.api.Test; 
import static org.junit.jupiter.api.Assertions.*; 
 
class PersonTest
{ 
    @Test 
    void getName() 
    { 
        Person p = new Person("James", "11223344A"); 
        assertEquals("James", p.getName()); 
    } 
} 

Let's explain this code more in depth:

@Test  annotation indicates that the method above is a test. The method header has been
automatically generated by JUnit.
In this test we create a Person  object with the (second) constructor
Next, we check if name attribute is the one that we expect. We use assertEquals  method with two
arguments (expected result and actual result), to evaluate with the corresponding getter if the attribute
has the expected value after creating the object. This method is in
org.junit.jupiter.api.Assertions  class in JUnit 5. There are also some other useful methods,

such as assertTrue , assertFalse  (we will see an example of these two methods later),
assertNull , or fail , which can be used to automatically emit a failure according to some

condition(s).

We can add as many assertions as we want in a test method. For instance, we can also check if name is not
null before checking if it is "James":

    @Test 
    void getName() 
    { 
        Person p = new Person("James", "11223344A"); 
        assertNotNull(p.getName()); 
        assertEquals("James", p.getName()); 
    } 

If we want to run this test class, we can right click on it in the left panel and choose Run PersonTest.

4. Running tests



Java programming language

Page 7 of 10

Then, we will see a JUnit panel with the results of every test contained in the test class:

If every test has been successful, then we will get a green icon, otherwise we will see an error icon next to each
test method that has failed.

If we need to have some previously initialized data before starting the tests, or some conditions previously
established, we can use the annotation @BeforeEach . We can also use the annotation @AfterEach  to
close or free some resources after the tests have been performed.

There is a method called setUp  that is usually employed to initialize data for every test case before they are
launched. So we can use the annotation @BeforeEach  with this method to initialize some data. This
method can be added from the test dialog in IntelliJ, when we add new test methods to the test class. For
instance, we can initialize a shared Person  object for all the test methods, and use it in every test method
that we want. For instance, here we instantiate a Person  object in the setUp  method, and use it in the

5. Initializations and closings.



Java programming language

Page 8 of 10

getName  test method and also in the equals  test method (we consider that two Person  objects are
the same if they have the same ID card):

class PersonTest
{ 
    Person person; 
 
    @BeforeEach 
    void setUp() 
    { 
        person = new Person("James", "11223344A"); 
    } 
 
    @Test 
    void getName() 
    { 
        assertNotNull(person.getName()); 
        assertEquals("James", person.getName()); 
    } 
 
    @Test 
    void testEquals() 
    { 
        Person testPerson = new Person("Test2","1111112K"); 
        testPerson.setIdCard(person.getIdCard()); 
        assertTrue(person.equals(testPerson)); 
        testPerson.setIdCard("222222"); 
        assertFalse(person.equals(testPerson)); 
    } 
} 

There are also some other common methods that can be used, such as tearDown  along with
@AfterEach  annotation to free resources for every test after their execution. Again, this method can be

added from the test class dialog in IntelliJ.

We have checked two methods so far, and we have added some different kinds of asserts in each one to
determine if they work properly or not with different inputs. But IntelliJ can also show how much of the
original code has been tested. This feature is called code coverage, and we can get to it by right clicking on
the test source file and choosing Run XXXXX with Coverage, being XXXXX the class name.

6. Checking code coverage



Java programming language

Page 9 of 10

Then, a new panel with some stats will appear:

According to these stats, our test covers 62% of Person  class. If we edit this class, we can see green, vertical
bars in the left margin for lines of code that are being executed, and red, vertical bars for the lines of code
that no test is exploring yet.



Java programming language

Page 10 of 10

Exercise 1:

Implement the tests for every method of Exercise 4 of this document. Use a project called SalesList
for this purpose, with separate source folders for the original code and the classes.

Exercise 2:

Create a new project called Access . Implement a class called Access with a method called
validUser(String user,String pass) that returns true if user is valid and false if it is not. In order for a user to
be valid, it must meet the following conditions:

user parameter must start with a letter.
user parameter must have a length between 7 and 10 characters.
Password must have a minimum length of 10 characters, and it must have at least one letter and
one number.

Design the test cases using the technique of the equivalent partition, and then implement these test
cases with JUnit.

Exercise 3:

Add a new method to the Access class: boolean register(String user, String pass) that will register the user.
The registration will consist in adding the user to a map. There will be a maximum of 10 allowed users in
the map, so that if we exceed this limit, the method will return false. If the registration is correct, it will
return true. Also, if a user with the existing name already exists in the map, it will return false. You are
also asked to implement the tests in JUnit.

https://nachoiborraies.github.io/entornos/md/en/06b

