
Java programming language

Page 1 of 3

From the classes seen in previous document to manage dates and times (LocalDate, LocalTime and
LocalDateTime) we can do some specific operations with them. For instance, we can work with different time
zones, so we can convert the date or time of a given zone of the planet into another, different zone. Also, we
can make some particular operations, such as adding, substracting or comparing dates or times.

In order to work with different time zones, we first need to identify the zone(s) we are interested in. ZoneId
class provides a static method to list all the available zone identifiers. Also, it has a static of method to
choose a specific zone:

Set<String> zones = ZoneId.getAvailableZoneIds();
for(String s: zones)
 System.out.println(s);
ZoneId madrid = ZoneId.of("Europe/Madrid");

Then, we can use ZonedDateTime class to convert a date or time given in a specific zone to another
different zone. We use of and withZoneSameInstant methods from this class. For instance, this piece of
code transform the current time in the zone Europe/Madrid into zone Europe/Bucharest:

ZonedDateTime dateZone =
 ZonedDateTime.of(LocalDateTime.now(), ZoneId.of("Europe/Madrid"));
ZonedDateTime anotherZone =
 dateZone.withZoneSameInstant(ZoneId.of("Europe/Bucharest"));
System.out.println("Now in Bucharest: " + anotherZone);

Exercise 1:

Create a program that asks the user to enter the zone and time where he/she was born, and transform
this time into some other zone, such as Chicago ("America/Chicago") or Tokio ("Asia/Tokyo").

Once we have our date or time objects (either LocalDate, LocalTime or LocalDateTime) we can make some
additional operations with them, such as:

Date and time

Operations with dates and times

1. Working with time zones

2. Operations with dates and times

file:///d%3A/Trabajo/Apuntes/java/md/en/slides/08c.html
file:///d%3A/Trabajo/Apuntes/java/md/en/08c.pdf

Java programming language

Page 2 of 3

Adding/Substracting parts of the date. For instance, add N days to a given date.
Compare dates to determine which one is earlier or later
Define a period between two dates. For instance, check how many days have passed since a given date.

We have some methods available in LocalDate, LocalTime or LocalDateTime objects to add or substract an
amount to/from them. For instance, we can use methods such as plusDays , minusYears ,
plusHours ...

LocalDate today = LocalDate.now();
LocalDate future = today.plusDays(15);
System.out.println("In 15 days it will be " + future);

Also, we can use the general methods plus and minus . In this case, we need to specify the quantity to
be added or substracted, along with the unit. We can make use of ChronoUnit class from
java.time.temporal package to specify these units.

LocalDateTime now = LocalDateTime.now();
LocalDateTime past = now.minus(3, ChronoUnit.HOURS);
System.out.println("3 hours ago it was " + past);

Note that all these operations return an object of the same type of the original that we took to add or
substract.

As LocalDate, LocalTime and LocalDateTime classes implement Comparable interface, we can easily compare
objects of these classes by calling compareTo method:

LocalDate date1 = LocalDate.now();
LocalDate date2 = LocalDate.of(2022, 6, 10);

if (date1.compareTo(date2) < 0)
 System.out.println("Today is not 2022-6-10 yet");

We can use Instant and Duration classes to set the duration between two time instants. This can be
particularly useful to measure the time it takes to complete a task.

2.1. Adding or substracting parts of a date

2.2. Comparing dates

2.3. Getting periods

Java programming language

Page 3 of 3

Instant start = Instant.now();

// ... Task to be executed

Instant end = Instant.now();
Duration duration = Duration.between(start, end);
System.out.println("Task completed in " + duration.toMillis() + "ms");

Also, we can use Period class to determine the period between two different dates or times, in the desired
unit. For instance, this piece of code determines the number of years and days between two dates, using
different versions of until method from Period object:

LocalDate date1 = ...
LocalDate date2 = ...

Period period = date1.until(date2);
System.out.println(period.getYears());
System.out.println(date1.until(date2, ChronoUnit.DAYS));

Exercise 2:

Create a program called NextBirthday that asks the user his/her birth date, and show how old he/she is,
and how many days are left until his/her next birthday.

