
Java programming language

Page 1 of 3

From Java 8, we can use some additional classes to manage date and time. All these classes belong to
java.time package. Depending on which part of the date we are interested in, Java provides three

different classes to manage them all:

LocalDate class lets us deal with dates made of day, month and year
LocalTime class lets us focus on the time part, including hour, minute, second and even nanosecond.
LocalDateTime class puts it all together, and lets us use a complete date, including the time part.

We can create a date or time of the current instant with a static method called now in these classes:

LocalDate dateNow = LocalDate.now();
LocalTime timeNow = LocalTime.now();
LocalDateTime fullNow = LocalDateTime.now();

We can also define a given date or time with a static method called of , specifying the date or time parts:

LocalDate myBirthday = LocalDate.of(1978, 4, 7); // Year, month, day
LocalTime myTime = LocalTime.of(22, 30, 10); // Hour, minute, second
LocalDateTime fullDate = LocalDateTime.of(1978, 4, 7, 22, 30, 10);

Keep in mind that month numbers start with 1 in this case, not with 0 as we have seen in Calendar class.

Once we have our date or time created, we have some available methods to get the separate parts of this
date or time, depending on the object we are managing (either LocalDate, LocalTime or LocalDateTime). For
instance, if we are working with dates (either in LocalDate or LocalDateTime objects), we have methods such
as getYear , getMonthValue or getDayOfMonth to get the year, month number or day, respectively:

int year = myBirthday.getYear();
int month = myBirthday.getMonthValue();

Date and time

New classes for date and time management

1. Creating dates and times

2. Getting parts of the date or time

file:///d%3A/Trabajo/Apuntes/java/md/en/slides/08b.html
file:///d%3A/Trabajo/Apuntes/java/md/en/08b.pdf

Java programming language

Page 2 of 3

If we are managing times (either with LocalTime or LocalDateTime) we can use methods such as getHour ,
getMinute and getSecond to get these parts of the time:

int hour = myTime.getHour();
int second = myTime.getSecond();

In order to format a date and show it with an appropriate format in the output, we can make use of
DateTimeFormatter class, from java.time.format package. It has a static method called
ofPattern that lets us specify the pattern of the date/time that we want to show. Then, we use an object

of this type to call its format method, passing the date or time object as parameter. Let's see an example:

LocalDate myBirthday = LocalDate.of(1978, 4, 7);
DateTimeFormatter formatter = DateTimeFormatter.ofPattern("dd - MMMM - yyyy");
System.out.println(formatter.format(myBirthday));
// Output: 07 - april - 1978

You can learn more about DateTimeFormatter class and the symbols that you can use in the patterns checking
its official API.

If we want to read a date or time from the keyboard (or any text input, such as a text file or a text field in a
JavaFX application) we can make use of DateTimeFormatter class to specify the pattern that we are
expecting, along with parse method that lets us parse a string with the specified pattern. For instance, if we
want the user to enter a dat with the format dd/MM/yyyy, we can do it this way:

DateTimeFormatter formatter = DateTimeFormatter.ofPattern("dd/MM/yyyy");
Scanner sc = new Scanner(System.in);
LocalDate userDate = LocalDate.parse(sc.nextLine(), formatter);

If user input does not match the specified pattern, then a DateTimeParseException is thrown. Note that
we can also use this same structure when dealing with LocalTime or LocalDateTime:

DateTimeFormatter formatter = DateTimeFormatter.ofPattern("dd/MM/yyyy - H:m:s");
Scanner sc = new Scanner(System.in);
LocalDateTime userDateTime = LocalDateTime.parse(sc.nextLine(), formatter);

3. Formatting dates and times

4. Parsing dates and times from keyboard

https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html

Java programming language

Page 3 of 3

Exercise 1:

Create a program called BirthdaySeason that asks the user to enter his/her birth date with the format
day-month-year and tells him/her if he/she was born in winter, spring, summer or autumn.

Exercise 2:

Create a program called PoliteGreeting that gets current time and tells Good morning, Good afternoon,
Good evening or Good night. In order to detect which is the current day range, you can follow these
rules:

Good morning if we are between 7 (included) and 12 (not included)
Good afternoon if we are between 12 (included) and 18 (not included)
Good evening if we are between 18 (included) and 21 (not included)
Good night otherwise

You can read more information about the different methods and options available for each class in the official
API:

LocalDate
LocalTime
LocalDateTime

5. More information

https://docs.oracle.com/javase/8/docs/api/java/time/LocalDate.html
https://docs.oracle.com/javase/8/docs/api/java/time/LocalTime.html
https://docs.oracle.com/javase/8/docs/api/java/time/LocalDateTime.html

