
Java programming language

Page 1 of 6

The Java Collections class contains static methods designed to operate with, or generate new collections.
Those methods include generating synchronized collections (for safe operation with multiple threads), order a
List (with some kind of comparator), reverse a List, rotate a List, get the minimum element, maximum, ...

When you look at Java's ArrayList reference web page, you'll see that this class is defined as ArrayList<E> .
The symbol <E> is a notation used to define a generic class, a class that the compiler doesn't know until we
instantiate an object. Another common notation is <T> , <S> , <U> , etc.. In general, a capital letter
between < and > .

If we create a generic, by default it can be any class, so the only properties and methods that the compiler will
allow us to use are the ones inherited from Object class (all classes in Java inherit from Object):

public class GenericExample<T>
{
 private T generic;

 public GenericExample(T generic)
 {
 this.generic = generic;
 }

 public void showType()
 {
 System.out.println(generic.getClass().getName().toString());
 // We can't use for example .substring()
 // since <T> can be anything.
 }

 public T getGeneric()
 {
 return generic;
 }
}

Collections

More about collections

1. The Collections class

2. Using generics in our own classes

file:///d%3A/Trabajo/Apuntes/java/md/en/slides/06e.html
file:///d%3A/Trabajo/Apuntes/java/md/en/06d.pdf
https://docs.oracle.com/javase/8/docs/api/java/util/Collections.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Java programming language

Page 2 of 6

We define the type of <T> when we instantiate an object of GenericExample:

GenericExample<String> genEx = new GenericExample<>("Hello world!");
genEx.showType(); // java.lang.String

/* Here we can use a String method with
the generic object because the compiler
knows that the generic is a string */
System.out.println(genEx.getGeneric().length());

We can specify that the generic must be a subtype of class or implement some interface. In this case, as it
happens with polymorphism, we can use the superclass or the interface's methods:

public class GenericExample<T extends Person>
{
 ...
 public void show()
 {
 // generic can use Person methods
 System.out.println(generic.getAge());
 }
 ...
}

// MAIN
GenericExample<String> genEx =
 new GenericExample<>("Hello world!"); // ERROR
GenericExample<Person> genEx =
 new GenericExample<>(new Person("Nacho", 40)); // OK

We can use more than one generic in a class:

public class GenericExample<T extends String, E extends Person>
{
 T attribute1;
 E attribute2;

 ...
}

2.1. An introductory example

Java programming language

Page 3 of 6

Imagine we have a class called Inventory that can store items (any object that inherits from class Item).
Let's see the difference in this case between using generics to define that class and using polymorphism.

The general appearance of Item class and some of its subclasses would be like this:

Java programming language

Page 4 of 6

public class Item
{
 private float price;
 private int weight;

 public float getPrice()
 {
 return price;
 }

 public void setPrice(float price)
 {
 this.price = price;
 }

 public int getWeight()
 {
 return weight;
 }

 public void setWeight(int weight)
 {
 this.weight = weight;
 }
}

public class Potion extends Item
{
 public void drink()
 {
 System.out.println("Gulp gulp gulp.");
 }
}

public class Weapon extends Item
{
 private int damage;

 public int getDamage()
 {
 return damage;
 }

 public void setDamage(int damage)
 {
 this.damage = damage;
 }
}

Java programming language

Page 5 of 6

If we use polymorphism to deal with a list of Item objects in our Inventory class, we would have
something like this:

public class Inventory
{
 private List<Item> items = new ArrayList<>();

 public void addItem(Item item)
 {
 items.add(item);
 }

 public Item getItem(int index)
 {
 return items.size() > index?items.get(index):null;
 }
}

// MAIN
Inventory inv = new Inventory();
inv.addItem(new Potion()); // Index 0
inv.addItem(new Weapon()); // Index 1

// returns an Item, usually we don't know which type
Item it = inv.getItem(0);

if(it instanceof Potion)
{
 ((Potion) it).drink();
} else if(it instanceof Weapon) {
 System.out.println("Damage: " + ((Weapon) it).getDamage());
}

If we use generics to handle the same list, we would have this:

Java programming language

Page 6 of 6

public class Inventory<T extends Item>
{
 private List<T> items = new ArrayList<>();

 public void addItem(T item)
 {
 items.add(item);
 }

 public T getItem(int index)
 {
 return items.size() > index?items.get(index):null;
 }
}

// MAIN
Inventory<Item> inv = new Inventory<>(); // Same behavior as before!
Inventory<Potion> potInv = new Inventory<>(); // Only allows potions
potInv.addItem(new Potion()); // OK
potInv.addItem(new Weapon()); // ERROR, <T> must be a Potion
Potion pot = potInv.getItem(0); // Compiler knows is a Potion.

In summary, when we always want to be able to use more than one type of object inside a class instance, we
can use polymorphism (an inventory with different types of items), although we still can use generics for this.
When we want the possibility to use only one class at a time, defined when we instantiate an object, we can
only do that with generics (we can create an inventory that only allows potions, other than only allows
weapons and so on, using the same class for all).

