
Java programming language

Page 1 of 7

Lists are collections whose elements are indexed. In other words, elements in these collections can be
accessed by an index 0, 1, 2, …., N, so that they can be sorted, and iterated. In Java, every type of list
implements a global interface called List , here you can see the API of this interface.

If you take a look at List API, there are some methods that we can use in any list type, such as:

add(element) or add(index, element) : to add an element, either at the end of the list, or at a
given index.
clear() to clear the list (remove all of its elements).
contains(element) : to check if a given element already exists in the list (as long as the class

overrides equals method to know how to check if two elements are equal or not).
get(index) : to get the element at the specified index
indexOf(element) : gets the index of the first occurrence of the given element (as long as the class

implements equals method). If the element does not exist in the list, then -1 is returned.
remove(index) : to remove the element at the specified index
remove(element) : to remove the first occurrence of the specified element in the list (as long as the

class overrides equals method)
size() to get the total number of elements stored in the list

The most popular list subtype that we can use in Java is ArrayList class (API). As it implements List
interface, we can use all of the methods from that interface. Internally, an ArrayList element is just a list that
treats the data as an internal array (although we don't need to care about the size of this array).

We can create an ArrayList by either defining an ArrayList variable or a List variable (using
polymorphism):

List myList = new ArrayList();
ArrayList myOtherList = new ArrayList();

Then, we can add, get, remove... elements from that list. These elements can be of any type, so we must take
care when getting elements from the list, and make sure that they are of the appropriate type.

Collections

Lists

1. List management in Java

file:///d%3A/Trabajo/ApuntesGitHub/java/md/en/slides/06b.html
file:///d%3A/Trabajo/ApuntesGitHub/java/md/en/06b.pdf
https://docs.oracle.com/javase/8/docs/api/java/util/List.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Java programming language

Page 2 of 7

myList.add("Hello");
myList.add(new Person("Nacho", 40));
...
if (myList.get(1) instanceof Person)
{
 Person p = (Person)(myList.get(1));
 System.out.println(p.getName());
}

If we use lists as we have seen in previous example, we may have some troubles, since we can add any kind of
object in the list, so we need to cast and check the object types before working with them. For instance, in
previous example we have typecasted the elements extracted from the list in order to use them. Otherwise,
Java treats them as Object instances:

// Only Object methods can be called
Object o = myList.get(1);

// Every Person method can be called
Person p = (Person)(myList.get(1));

In order to avoid these checkings, we can use generics. Generics are a way to customize a given object or
collection to work with a concrete data type. This data type is expressed between < and > symbols, after
the collection type.

For instance, if we want to work with a list of strings using generics, we initialize the list this way (either using
a List or an ArrayList):

List<String> stringList = new ArrayList<>();
ArrayList<String> anotherStringList = new ArrayList<>();

From this point on, every element that we add to the collection needs to be a string, and whenever we get an
element from the collection, we can be sure that it will be a string, so no typecast is needed.

stringList.add("Hello");
stringList.add("Goodbye");
System.out.println(stringList.get(1).toUpperCase()); // GOODBYE

1.1. Using generics

Java programming language

Page 3 of 7

Note that we can use polymorphism with generics, so that, if we create a list of Animal objects, for
instance, there can be any type of animal in that list (dogs, ducks, and so on).

List<Animal> animals = new ArrayList<>();
animals.add(new Dog(...));
animals.add(new Duck(...));
...

There are other list subtypes available in the Java API, although we are not going to work with them in this
unit. Here you can have a quick overview:

Vector class is something similar to ArrayList , but it is thread-safe (this is, it is suitable for
working with multiple threads), so it is not as efficient as ArrayList is.
LinkedList class is another list subtype in which every element is not only linked with the following

one, but with previous one, so we can explore the list from any of its edges with the same efficiency

There are some important differences regarding performance between ArrayList (or Vector) and
LinkedList :

ArrayList : its main advantage is the complexity of accessing an index to get an element, which is
O(1), this is, a constant value, but it's not the best implementation when we want to do many add and
remove operations, that have a complexity of O(n), this is, it depends on the list size.
LinkedList : there is no internal array, so nothing has to be resized, elements are inserted and

removed only by modifying references in the previous and next object. This is the main advantage of this
type of list. The main disadvantage is accessing a random position because it has to travel through all
items to get to the specified index (there's no internal index to access a position directly)

If we want to create a list of some basic data type (such as integers or doubles) we can't specify this simple
type in the generic:

List<int> numbers = new ArrayList<>();

Alternatively, we can make use of wrappers, special classes that are part of the Java API and can replace basic
types in some situations. These classes are:

Integer (for int type)
Float (for float type)
Double (for double type)
Character (for character type)

1.2. List subtypes

1.3. Lists of basic data types

Java programming language

Page 4 of 7

...

NOTE: String is not a basic type, because it's made of a sequence of chars, so there's no wrapper for
this class. We just use String class.

Then, we can create a list (or any collection) of any of these types, and then add elements on it as basic types:

List<Integer> numbers = new ArrayList<>();
numbers.add(3);
numbers.add(8);

int aNumber = numbers.get(0);

In the same way that we use Comparator or Comparable interfaces to determine how to sort complex
objects in an array through Arrays.sort method, there is a Collections.sort method (in class
java.util.Collections) that lets us sort a list using a comparator.

All that we need is to define the comparing method (either in the own class to be sorted, or in another class
through a Comparator), and then call this method to sort the collection. For instance, if we have a list or
Person objects, we can sort it by age using this comparator:

List<Person> people = new ArrayList<>();
... // Fill list
Collections.sort(people, new Comparator<Person>()
{
 @Override
 public int compare(Person p1, Person p2)
 {
 return Integer.compare(p1.getAge(), p2.getAge());
 }
});

If the own class (Person in this example) has the comparing method in its code, then we can call
Collections.sort with just one parameter (the collection to be sorted):

Collections.sort(people);

Exercise 1:

Go back to Exercise 1 of this document. Replace the video game array in main method with a generic
ArrayList . Then, add some video games to the list (either VideoGame or PCVideoGame objects),

1.4. Sorting lists

file:///d%3A/Trabajo/ApuntesGitHub/java/md/en/05c

Java programming language

Page 5 of 7

explore and show the list with a for and ask the user to:

Search video games by title: the user will type a title and then the program will show all the video
games whose title contains the typed text (ignoring case).
Remove a video game from the list: the user will type the index of the video game to be removed,
and if the index is valid, the video game in that index will be removed.

Exercise 2:

Sort the video game list in previous exercise by price in ascending order using Collections.sort
and the appropriate comparing method. Do this step before printing the list in the screen.

There are some specific types of lists which are more restrictive regarding how to use add/remove operations.
In this section we are going to talk about stacks and queues.

A stack is a collection (or list subtype) in which elements can only be added or removed by one of the edges
called top. We call these structures LIFO structures, which stands for Last In, First Out. Only the element at the
top of the stack can be modified (added or removed).

In order to use stacks in Java we have Stack class. As you can see in the official API, it's a subtype of
Vector class, so it's a list. It just adds some specific methods to deal with the top:

push(element) : adds a new element onto the top of the stack
pop() : removes the element at the top of the stack and returns it (or throws an exception if stack is

empty)
peek() : returns the element at the top of the stack without removing it (it also throws an exception if

stack is empty).
empty() : checks if stack is currently empty

Here you can see an example of how to use it:

Stack(Integer) numberStack = new Stack<>();
numberStack.push(3);
numberStack.push(9);
...
while (!stack.empty())
{
 int number = stack.pop();
 System.out.println(number);
}

Exercise 3:

2. Stacks and queues

2.1. Stacks

https://docs.oracle.com/javase/8/docs/api/java/util/Stack.html

Java programming language

Page 6 of 7

Create a project called ReversedFigure that asks the user to draw a bi-dimensional figure (line by line),
and then prints the same figure inverted vertically. For instance, if user draws this:

 *

then the program must output this:

 *

NOTE: as you may notice, stacks are really useful when it comes to inverting orders.

Queues are another special type of list in which elements are added by one of the edges and removed from
the opposite edge. These structures are also called FIFO structures, which stands for First In, First Out. The
main basic operations in queues are:

Adding elements (enqueue)
Extracting elements (dequeue)

Java provides Queue interface in order to deal with queues. You can see in the API that there are some
additional, useful methods:

add(element): adds a new element in the tail of the queue
remove() or poll() : retrieve and remove the element at the head of the queue. There's a

difference between these two methods, depending on whether we want to return null if queue is empty
or not.
peek() : checks the element at the head of the queue (without removing it)

There are some classes in Java API implementing this interface. One of them is LinkedList class, which we
have mentioned before. Here you have an example of how to use it as a queue:

2.2. Queues

https://docs.oracle.com/javase/8/docs/api/java/util/Queue.html

Java programming language

Page 7 of 7

LinkedList<Integer> numbers = new LinkedList<>();

numbers.add(1);
numbers.add(3);
numbers.add(4);

while(numbers.size() > 0)
{
 System.out.println("We are going to extract " + numbers.peek());
 System.out.println(numbers.remove());
}

Exercise 4:

Create a project called ConcertAttendance. Define a class called Person to represent every person
that wants to attend the concert, and store his/her name and age. Then, in the main program, add some
Person objects to a queue (add them until user enters empty values). Then, filter from this queue only

the adult people, and print the final result in the screen, in arrival order.

