
Java programming language

Page 1 of 2

Exercise 1:

Create a project called ListBenchmark. We are going to test in which cases is better to use an
ArrayList , or a LinkedList . To measure the time an operation takes, you can use this piece of

code:

Instant start = Instant.now();
// Some operation with ArrayList or LinkedList
Instant end = Instant.now();
Duration dur = Duration.between(start, end);
System.out.printf("ArrayList: The operation ... takes: %dms\n", dur.toMillis());

You have to compare these situations (ArrayList<Double> vs LinkedList<Double>). Create one
of each empty and reuse the same lists in every comparison:

1. Add 100.000 (double) random items always at position 0. Compare times.
2. Delete the first 50.000 items (always delete the first one).
3. Add 50.000 random items in random positions.
4. Delete 50.000 items from random positions.

You'll see that when using a lot of random accesses (index), ArrayList is much faster (LinkedList
needs to count from the beginning). When adding or deleting items at the beginning the situation is the
opposite (ArrayList has to reorder internal indexes every time, whereas LinkedList doesn't
need to).

Exercise 2:

Create a project named Companies with these classes (including Main):

Company : Has name and money (double) attributes (values set in the constructor).
Person : Has name and age attributes (values set in the constructor).

In the main method, create a TreeMap (ordered by companies money) in which the key is a
Company and the value is a TreeSet of Persons (ordered by person's age). Populate the
TreeMap with 3 companies (do not add them ordered by money) and each company will have a list
of 3 people (not ordered when adding). Iterate through the TreeMap (use the .entrySet()
method to get a Set of keys ordered) and show the companies with their people (both should be
ordered by money and age).

Collections

Collection management - Additional exercises

file:///d%3A/Trabajo/Apuntes/java/md/en/slides/06_overview.html
file:///d%3A/Trabajo/Apuntes/java/md/en/06_overview.pdf

Java programming language

Page 2 of 2

Exercise 3:

Create a project called AnimalConversation containing the following classes (including a Main class):

An abstract class called Animal . It will have a protected attribute called name (string, assigned
in the constructor), and an abstract method called talk , that will return a String with the sound
that this animal produces.
Classes Dog , Cat and Sheep that inherit from class Animal and implement the abstract
method talk (the dogs will return "Wof wof", the cats will return "Meooow" and the sheeps will
return "Beeee").
A class called AnimalConversation that holds two objects (animal1 and animal2),
derived from Animal . Use generics to define the type of these two objects (each object can be
from a different type but always derived from Animal). This class has a method called chat() ,
that prints in console the message from animal1 (calling its method talk()), and then from
animal2 .

In the main method, instance two or more AnimalConversation objects, each to compare
different kind of animals (one can compare only Dog vs Cat , another Cat vs Sheep , and
so on…). See that depending on how you define the generics in every instance it only allows you to
set or get (implement setters and getters) that kind of animal and not others.

