
Java programming language

Page 1 of 13

In this unit we are going to have an overview of two important concepts closely related with inheritance:
abstract classes and interfaces, and some practical examples about how to apply them to real life problems.

An abstract class is a class that can't be instantiated directly (this is, we can't create objects of this class),
because its code or functionality is not completely defined. For instance, let's suppose that we have a class
called Animal , in which we specify some attributes of every animal (such as color, or number of legs).
However, there are some other attributes or operations, such as talk that can't be specified unless we
know the concrete type of animal that we are talking about. In this case, we could (should) define Animal
class as an abstract class.

If we want to define an abstract class in Java, we just add the reserved word abstract before class
element. We can specify its attributes, constructors and other methods if we want to:

public abstract class Animal
{
 protected String color;
 protected int numberOfLegs;

 public Animal(String color, int numberOfLegs)
 {
 this.color = color;
 this.numberOfLegs = numberOfLegs;
 }

 public String getColor()
 {
 return color;
 }

 public void setColor(String color)
 {
 this.color = color;
 }

 ...
}

Object oriented programming

Abstract classes and interfaces

1. Abstract classes

file:///d%3A/Trabajo/Apuntes/java/md/en/slides/05e.html
file:///d%3A/Trabajo/Apuntes/java/md/en/05e.pdf

Java programming language

Page 2 of 13

We can also add as many abstract methods as we want to. An abstract method is a method that is not
implemented, so we set it as abstract and with no code. For instance, we could add an abstract method to
previous class called talk :

public abstract class Animal
{
 protected String color;
 protected int numberOfLegs;

 ...

 public abstract void talk();
}

Keep in mind that an abstract class does NOT need to have abstract methods in order to be abstract, so
we just add them if we need them. In this case, we can't make an animal talk unless we know the concrete
type of animal, but we want every animal to talk as soon as they are created, so let's define this abstract
method to be implemented later.

In order to create subtypes of an abstract class, we just inherit from it. These subtypes can be:

abstract, so that we keep on adding the abstract modifier to the class, and we can even add more
abstract methods if we want to. For instance, we could define a subclass called Bird with an abstract
method called fly :

public abstract class Bird extends Animal
{
 public abstract void fly();
}

concrete, so that we MUST implement (override) every abstract method defined in parent class(es). In our
case, we could define an Animal subclass called Dog that needs to implement talk method, or a
Duck subclass that inherits from Bird and then needs to implement both abstract methods (talk

and fly).

1.1. Inheriting from an abstract class

Java programming language

Page 3 of 13

public class Dog extends Animal
{
 public Dog(String color, int numberOfLegs)
 {
 super(color, numberOfLegs);
 }

 @Override
 public void talk()
 {
 System.out.println("Woof woof!!");
 }
}

public class Duck extends Bird
{
 public Duck(String color, int numberOfLegs)
 {
 super(color, numberOfLegs);
 }

 @Override
 public void talk()
 {
 System.out.println("Quack quack!!");
 }

 @Override
 public void fly()
 {
 System.out.println("I'm flying like a duck!");
 }
}

We have just said that we can't instantiate objects of an abstract class. However, we can define an object of an
abstract class from any of its concrete subclasses. This way, we can assign a variable of an abstract type any
object of a subtype. For instance, if we look at previous example, we can't create an Animal object, since
this class is abstract; but we can create a Dog object and assign it to an Animal variable, because of
polymorphism.

Animal a1 = new Animal("red", 2); // Error!!
Animal a2 = new Dog ("white", 4); // OK

1.2. Abstract classes and polymorphism

Java programming language

Page 4 of 13

Exercise 1:

Create a project called Animals, with a main class called AnimalsMain within a package called
animals.main . Then, add the classes seen before in a package called animals.types . Define the

abstract classes Animal and Bird with their corresponding subclasses Dog and Duck and any
other class that you may want to add (such as Cat or Lion , for instance). Then, define an array of 5
animals (type Animal) and fill it with some information (you don't need to ask it to the user if you don't
want to). Then, explore the array and make each animal talk.

Exercise 2:

Go back to Exercise 5 of this document and make these changes to it (create a backup of the original
project before making these changes):

Define CulturalObject class as abstract
In the main application, define an array of 6 CulturalObject objects and then add three books
and three music discs to it. Then, print the whole array in the screen.

An interface can be considered as a special type of class with no code implemented (actually, we could add
some code inside them, but this is not the aim of this section). So, they can't be directly instantiated either. We
use interfaces to define a bunch of methods that need to be implemented by any class that wants to "inherit"
from that interface.

For instance, let's suppose that we have an interface called Shape to represent any type of shape, such as
circles, squares and so on. We don't want to store any specific information about a shape, but we want every
shape to calculate its own area, and get drawn. So we can define an interface like this one:

public interface Shape
{
 public float calculateArea();
 public void draw();
}

So, any class that wants to "inherit" from that interface must implement these two methods. Actually, we are
not inheriting from the interface, but implementing it, so we don't use extends, but implements reserved
word.

2. Interfaces

file:///d%3A/Trabajo/Apuntes/java/md/en/05c

Java programming language

Page 5 of 13

public class Circle implements Shape
{
 float radius;

 public Circle(float radius)
 {
 this.radius = radius;
 }

 @Override
 public float calculateArea()
 {
 return Math.PI * radius * radius;
 }

 @Override
 public void draw()
 {
 System.out.println("Drawing a circle!");
 }
}

We have just read about abstract classes and interfaces. None of them can be instantiated, and both can have
some parts of unimplemented code. But... how to decide which one we must use in a given program?

Abstract classes are inherited, so whenever we are wondering if we should create an abstract class, we
need to be sure that:

The subclasses that we will define later are subtypes of the abstract class
We don't need to inherit from anything else (Java only lets us inherit from one class)

Interfaces are implemented, and a class can implement as many interfaces as it needs, and also inherit
from any other (single) class

public class MyShape extends AnotherClass
 implements Shape, Comparable
{
 ...
}

The only drawback that interfaces have is the (almost) total lack of code: we can't define attributes,
constructors or other methods. We can implement some static methods and other special code, and leave
unimplemented a set of methods, so that any implementing class can fill them and act as the interface. In our

2.1. Extending vs implementing

Java programming language

Page 6 of 13

previous example, a Circle is not considered a Shape (since it does not inherit from it), but we can say that a
Circle acts as a Shape, because it implements the corresponding interface. Also, we can define an array of an
interface object and fill it with concrete objects implementing this interface:

Shape[] shapes = new Shape[10];
shapes[0] = new Circle(...);
shapes[1] = new Square(...);
...
shapes[0].draw();

Exercise 3:

Create a project called Shapes, with a main class called ShapesMain within a package called
shapes . Then, add the Shape interface to that same package, and all the implementing classes

(such as Circle , Rectangle or Square) in a subpackage called shapes.types . Implement
both methods calculateArea and draw in all of them (just print a message in the draw method
of each shape). Then, define an array of 5 shapes (type Shape) and fill it with some information (you
don't need to ask it to the user if you don't want to). Finally, explore the array and calculate the area of
each shape.

You may be wondering how interfaces can be useful in your day to day work. Let's suppose that you are
managing a list or array of complex objects, such as Person objects with their names and ages:

2.2. Example: sorting complex objects

Java programming language

Page 7 of 13

class Person
{
 private String name;
 private int age;

 public Person(String name, int age)
 {
 this.name = name;
 this.age = age;
 }

 ...
}

...

public static void main(String[] args)
{
 Person[] people = new Person[50];

 people[0] = new Person("Nacho", 40);
 people[1] = new Person("Juan", 70);
 ...
}

What if we want to sort this array by people's age, in descendant order? We may define a method to manually
sort the array, by applying some of the well-known algorithms (such as bubblesort algorithm):

for (int i = 0; i < people.length - 1; i++)
{
 for (int j = i + 1; j < people.length; j++)
 {
 if (people[i].getAge() < people[j].getAge())
 {
 People aux = people[i];
 people[i] = people[j];
 people[j] = aux;
 }
 }
}

However, there is a faster way (in terms of efficiency) to get this result, although we may type some more
code than in previous example. There are a couple of interfaces available in the Java core that lets us sort any
kind of object. These interfaces are Comparator and Comparable. They both have one method to be
implemented:

https://docs.oracle.com/javase/8/docs/api/java/util/Comparator.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html

Java programming language

Page 8 of 13

If we choose Comparable interface, we must implement a method called compareTo , which receives
a single object as a parameter, and compares it with current object (this). It also returns an integer
indicating which one will go first in the array: current object (negative number), the object received as a
parameter (positive number), or zero if they are equal. As we are working with this , we will use this
interface applied to the class whose objects need to be sorted.
Regarding Comparator interface, we need to implement a method called compare . It receives two
objects as parameters, and returns an integer indicating which will go first in the array: the first one
(negative number), the second one (positive number) or zero if both are equal. We usually define an
additional class to implement this interface, and sort objects of another different class.

Let's see how to use them with our Person class. First of all, we need to implement the chosen interface for
our class. If we choose Comparable interface, this class needs to be Person class, and in the code of
compareTo method we just return a number depending on which age is greater: remember, we need to

sort people by age in descendant order, so we need to return a negative number if this object is older than
the parameter:

class Person implements Comparable<Person>
{
 private String name;
 private int age;

 public Person(String name, int age)
 {
 this.name = name;
 this.age = age;
 }

 ... // Getters and setters

 @Override
 public int compareTo(Person p)
 {
 if (this.getAge() > p.getAge())
 return -1;
 else if (p.getAge() > this.getAge())
 return 1;
 else
 return 0;
 }
}

If you take a look at Integer API, there's an static method called compare that gets two integers as
parameters and returns an integer determining which one is lower or greater (negative if the first one is lower,
positive if the first one is greater). So, we can take advantage of this static method in order to sort persons by
age. If we want to sort them in ascending order, we can do this:

https://docs.oracle.com/javase/8/docs/api/java/lang/Integer.html

Java programming language

Page 9 of 13

@Override
public int compareTo(Person p)
{
 return Integer.compare(this.getAge(), p.getAge());
}

But, if we want to sort the array in descending order, we just swap the order of the parameters:

@Override
public int compareTo(Person p)
{
 return Integer.compare(p.getAge(), this.getAge());
}

There are similar methods in classes such as Float , Character , Double , etc, that let us compare
primitive data types.

Then, in our main method, we just need to call Arrays.sort method from Arrays class (we need to
import java.util.Arrays class in our code), and then our array will be automatically sorted:

import java.util.Arrays;
...
public static void main(String[] args)
{
 Person[] people = new Person[50];
 ... // Fill array
 Arrays.sort(people);
 // Here our array is already sorted by age (descending)
}

If we choose Comparator interface instead of previous one, we usually define an external class that
implements it (other than Person class)...

public class PersonComparator implements Comparator<Person>
{
 @Override
 public int compare(Person p1, Person p2)
 {
 return Integer.compare(p2.getAge(), p1.getAge());
 }
}

Java programming language

Page 10 of 13

Then, we just need to call Arrays.sort method with two arguments: the array to be sorted (our people
array), and a comparator object that we will use to sort it (an instance of PersonComparator class):

import java.util.Arrays;
...
public static void main(String[] args)
{
 Person[] people = new Person[50];
 ... // Fill array
 Arrays.sort(people, new PersonComparator());
 // Here our array is already sorted by age
}

This way, we can leave the original class Person unchanged, and use another class to compare Person
objects. This is particularly useful when we have no access to the code of the original class to modify it, or if
we want to use an anonymous class, as we will see in next section.

Exercise 4:

Go back to Exercise 1 of this document, and create a copy of it called SortedVideoGameList. Then, use
either Comparable or Comparator interfaces to sort the video game array by price (in ascending
order) and print the sorted array in the screen.

As abstract classes and interfaces can't be instantiated, we always need to define a subclass that extends or
implements the given abstract class or interface, and then instantiate this subclass. From Java 7, there is a
shortcut to define these subclasses without having to define a new source file and/or a new class element.
We are talking about anonymous classes.

An anonymous class is a class without name that is created at the point where we need to implement a given
interface, or extend from a given abstract class, so that we don't need to define an additional class for it.

Let's see how anonymous classes work with a couple of examples. The first one creates a new instance of an
Animal , to define a new type of animal that is not defined in previous classes (Dog or Duck , for

instance).

3. Anonymous classes

file:///d%3A/Trabajo/Apuntes/java/md/en/05c

Java programming language

Page 11 of 13

Animal strangeAnimal = new Animal("yellow", 2)
{
 @Override
 public void talk()
 {
 System.out.println("Vote for Quimby!");
 }
};

strangeAnimal.talk();

Notice that we just define an instance of Animal class and, inside the curly braces, we need to override and
implement every pending abstract method (talk , in this case). We can also define any additional attribute
or method that we need:

Animal strangeAnimal = new Animal("yellow", 2)
{
 String name = "Joe Quimby"

 @Override
 public void talk()
 {
 anotherMethod();
 System.out.println("Vote for Quimby!");
 }

 private void anotherMethod()
 {
 System.out.println ("My name is " + name);
 }
};

strangeAnimal.talk();

What we are defining, anyway, is an object which is a subtype of Animal in this case. So we can`t re-use
this code to define another animal later (we would need to duplicate the code).

Regarding interfaces, we can also instantiate them and implement its methods in an anonymous class. This
example shows how to define a new subtype of shape with its own implemented methods (and any additional
one that we may add):

Java programming language

Page 12 of 13

Shape irregularShape = new Shape()
{
 @Override
 public float calculateArea()
 {
 return 0.5f;
 }

 @Override
 public void draw()
 {
 System.out.println("Drawing this particular shape!");
 }
};

irregularShape.draw();
System.out.println(irregularShape.calculateArea());

We can use anonymous classes in many situations. For instance, we can define "on the fly" the sorting method
for an array of Person objects like the one seen in previous examples:

import java.util.Arrays;
...
public static void main(String[] args)
{
 Person[] people = new Person[50];
 ... // Fill array
 Arrays.sort(people, new Comparator<Person>()
 {
 @Override
 public int compare(Person p1, Person p2)
 {
 return Integer.compare(p2.getAge(), p1.getAge());
 }
 });
 // Here our array is already sorted by age
}

Anonymous classes are particularly useful when we need to define a particular instance of an abstract class or
interface at a given point of our code (and nowhere else). This way, we avoid defining a new class element
with its associated code. However, if we are planning to use this class definition in more than one place, then
a "normal" class is recommended, so that we don't duplicate the code.

3.1. When can we use anonymous classes?

Java programming language

Page 13 of 13

Exercise 5:

Update Exercise 3 by adding a new shape through an anonymous class. This shape will act as a diamond
and it will have two internal attributes: the short axis and the long axis. Calculate its area by applying the
corresponding formula, and implement the draw method by printing in the screen the message "I'm a
diamond!". Then, add an object of this type to the shapes array to use its methods.

Exercise 6:

Define a Comparator in previous exercise to compare shapes by their area, in descending order. You
must use an anonymous class to implement the comparator. Then, sort the array with this comparator
and print it in the screen.

