
Java programming language

Page 1 of 3

Along previous sections, we've been using static and final words in some parts of our code. It's now time to
explain what they exactly mean.

static modifier defines elements that belong to the class itself, and not to any specific object of the class. For
instance, if we define a static attribute:

public class MyClass
{
 static int count = 0;
}

Then every object that we create of that class will share this attribute with the rest of the objects of that class.
So a static attribute is something like a shared variable.

Regarding methods, a static method is a method that can be called without creating any object of the class:

Object oriented programming

Using static and final

1. Static elements

file:///d%3A/Trabajo/Apuntes/java/md/en/slides/05d.html
file:///d%3A/Trabajo/Apuntes/java/md/en/05d.pdf

Java programming language

Page 2 of 3

public class MyClass
{
 ...
 public static void myMethod()
 {
 ...
 }

 public void myOtherMethod()
 {
 ...
 }
}
...
MyClass.myMethod(); // OK
MyClass.myOtherMethod(); // ERROR

MyClass mc = new MyClass();
mc.myMethod(); // OK (but not necessary)
mc.myOtherMethod(); // OK

Keep in mind that in a static method you can only use other static elements (attributes or methods), but not
any non-static method existing outside of the method. For instance, this could not be done, since
myOtherMethod is not static:

public static void myMethod()
{
 myOtherMethod();
}

public void myOtherMethod()
{
 ...
}

If we want to use this method, then we need to instantiate a MyClass object inside the static method, and
then call this other method:

Java programming language

Page 3 of 3

public static void myMethod()
{
 MyClass mc = new MyClass();
 mc.myOtherMethod();
}

public void myOtherMethod()
{
 ...
}

You can use many other static methods existing in Java. For instance, Math class has a lot of them, such as
Math.pow(...) , or Math.sqrt(...) .

At the beginning of this unit we've talked about instance variables referring to attributes. We can talk about
instance elements to refer to any element in a class (either an attribute or a method) that belongs to a given
object, this is, we need to instantiate an object to use or access this element.

On the other hand, we have class elements (either class attributes or methods), this is, elements that don't
belong to a particular object, so we don't need to instantiate any object to use them. This is what we get when
we use static in our classes.

final modifier lets us define elements that can't be modified. If we apply this modifier to an attribute or
variable, we are defining a constant: the element can't be re-assigned to any other value:

final int number = 3;

// ERROR
number = 6;

We can also apply this modifier to methods, or even classes. If we apply the modifier to a method, we are
indicating that this method can't be overriden by any possible child class. Regarding classes, a final class can't
be inherited.

1.1. Instance elements vs class elements

2. Final elements

