
Java programming language

Page 1 of 22

Classes are not isolated elements in a program, usually. Objects of a class need to interact with objects of
another class in many different ways, and that's how relationship between classes are formalized. In this
document we are going to see the main relationships that we can establish between classes: association,
inheritance and dependency.

Association is a relationship between two classes, in which one of them is part of the elements of the other
one, this is, an object of one of the classes is an attribute or instance variable of the other class. It is usually
represented in the code with a reference to the contained object or a collection or array of those objects. If we
take back our example of a bookshop, we could say that a book has an author. Then, we can define a new
class called Author with some attributes, such as the name and year of birth:

Object oriented programming

Class relatioships

1. Class associations

file:///d%3A/Trabajo/ApuntesGitHub/java/md/en/slides/05b.html
file:///d%3A/Trabajo/ApuntesGitHub/java/md/en/05b.pdf

Java programming language

Page 2 of 22

class Author
{
 private String name;
 private int yearBirth;

 public Author(String name, int yearBirth)
 {
 this.name = name;
 this.yearBirth = yearBirth;
 }

 public String getName()
 {
 return name;
 }

 public void setName(String name)
 {
 this.name = name;
 }

 public int getYearBirth() {
 return yearBirth;
 }

 public void setYearBirth(int yearBirth) {
 this.yearBirth = yearBirth;
 }
}

We can establish a Has-A relationship between these two classes (a book has an author), so we define an
association between them. To do this, our Book class will have an additional attribute to store the author of
this book (we assume that every book has one, and only one, author). We need to add a new parameter to set
the author from the constructor, and the corresponding getter and setter for this new attribute.

Java programming language

Page 3 of 22

class Book
{
 private String title;
 private int numPages;
 private double price;
 private Author author;

 public Book(String title, int numPages, double price, Author author)
 {
 this.title = title;
 this.numPages = numPages;
 this.price = price;
 this.author = author;
 }

 ...

 public Author getAuthor()
 {
 return author;
 }

 public void setAuthor(Author author)
 {
 this.author = author;
 }
}

Regarding our main program, we can define an Author object and associate it to a given book. Then, we
can print the typical information of the book... but also author's information, such as author's name:

public class BookExample
{
 public static void main(String[] args)
 {
 Author a = new Author("J.R.R. Tolkien", 1892);

 // The lord of the Rings, 850 pages, 13.50 eur, Tolkien
 Book b = new Book("The lord of the Rings", 850, 13.50, a);

 // Print book title and author's name
 System.out.println(b.getTitle());
 System.out.println(b.getAuthor().getName());
 }
}

Java programming language

Page 4 of 22

Note that, if we want to associate the same author to more than one book, we just need to use the same
object, instead of creating/repeating the object again for every new book.

Author a1 = new Author("J.R.R. Tolkien", 1892);
Author a2 = new Author("J.R.R. Tolkien", 1892);
// a2 is not the same than a1 (different objects in memory)

Book b1 = new Book("The lord of the Rings", 850, 13.50, a1);
Book b2 = new Book("The hobbit", 345, 8.76, a2); // Different author
Book b3 = new Book("The hobbit", 345, 8.76, a1); // Same author

Exercise 1:

Improve exercise TeamsExample.java from previous document in another source file called
TeamsExample2.java. Now every team will have an array of 5 players. Add a new class called Player
to the source file. For each player, we need to define his/her name, age and back number. Add the
corresponding constructor and getters/setters. Then, modify Team class to store 5 Player objects, and
adapt your main function to create a team with all the players inside it. Print the information of the team,
including the players that belong to it.

Exercise 2:

Improve exercise VideoGameList.java from previous document in another source file called
VideoGameList2.java. Now, every video game has a Company that created it. For every company, we
need to store its name and the foundation year. Associate a company to each video game, so that some
video games can share the same company object. Then, modify the main application to specify the
company information for every videogame (besides video game initial data). Make sure that you share
the same Company object among all the video games belonging to the same company.

Associations are (or can be) bi-directional. In a class diagram, they are represented by a continuous line
joining both clases involved, including the cardinality of each one in the relationship. In our case, a Book has
one author, and an author can have many books. This can be represented like this:

1.1. Association navigability

Java programming language

Page 5 of 22

However, if we don't specify it, associations are (by default) bi-directional. This means that we can retrieve the
author of a book from the book object (we can do this, already), but we can also retrieve the list of books of
an author from the author object. This last part of the relationship is not implemented in our example, so,
unless we want to implement it, we need to represent this association as unidirectional, by adding an arrow
pointing to Author class. This means that we can get the author from a book object, but not the opposite.
The arrow can be placed at either the line or the association name.

The programmer can decide if an association needs to be bi-directional or not, so only one of the classes (or
both) will be related with the other one.

Let's have a look at this example: we have a House class to represent houses. From each class, we want to
know the address, and the total number of rooms. Each house has a living room, so we use a LivingRoom
class to represent it. We store the total area of the living room. We can establish a one-to-one relationship
between these classes (a house has one living room, and a living room belongs to one house):

Java programming language

Page 6 of 22

Now, we are going to represent this bi-directional relationship in Java. First of all, we add a LivingRoom
object as attribute in House class, and we assign it in the constructor:

Java programming language

Page 7 of 22

class House
{
 private String address;
 private int rooms;
 private LivingRoom livingRoom;

 public House(String address, int rooms, LivingRoom livingRoom)
 {
 this.address = address;
 this.rooms = rooms;
 this.livingRoom = livingRoom;
 }

 public String getAddress()
 {
 return address;
 }

 public void setAddress(String address)
 {
 this.address = address;
 }

 public int getRooms()
 {
 return rooms;
 }

 public void setRooms(int rooms)
 {
 this.rooms = rooms;
 }

 public LivingRoom getLivingRoom()
 {
 return livingRoom;
 }

 public void setLivingRoom(LivingRoom livingRoom)
 {
 this.livingRoom = livingRoom;
 }
}

Next, we try to do the same with LivingRoom class (we add a House object and try to assign it in the
constructor):

Java programming language

Page 8 of 22

class LivingRoom
{
 private int area;
 private House house;

 public LivingRoom(int area, House house)
 {
 this.area = area;
 this.house = house;
 }

 public int getArea()
 {
 return area;
 }

 public void setArea(int area)
 {
 this.area = area;
 }

 public House getHouse()
 {
 return house;
 }

 public void setHouse(House house)
 {
 this.house = house;
 }
}

But let's try to create both objects from a main program:

LivingRoom lr = new LivingRoom(40, ???); // Where's the house??
House h = new House("Java Street", 3, lr); // LivingRoom is OK

As you can see, one of the constructors is missing some information. When we want to establish a bi-
directional association between two classes, one of them can be set in the constructor, but the other one (the
first object that we create) must wait. So the constructor of LivingRoom class does not need a House
parameter:

Java programming language

Page 9 of 22

public LivingRoom(int area)
{
 this.area = area;
 // House remains unassigned
}

Then, we have two options to assign the house to a living room:

We call the setter from LivingRoom once the house has been created:

LivingRoom lr = new LivingRoom(40);
House h = new House("Java Street", 3, lr);
lr.setHouse(h);

We can do this automatically in the house constructor, as soon as we assign the living room to it:

public House(String address, int rooms, LivingRoom livingRoom)
{
 this.address = address;
 this.rooms = rooms;
 this.livingRoom = livingRoom;
 // Assign the livingRoom to this house
 this.livingRoom.setHouse(this);
}

If we use this last way, we don't need any additional outer code. As soon as we instantiate both objects, they
are automatically associated:

LivingRoom lr = new LivingRoom(40);
House h = new House("Java Street", 3, lr);
// At this point, association is already bi-directional

Exercise 3:

Create a source file called BookAssociation.java. Add the Book and Author class that we have
already implemented in previous example, and try to make this association bi-directional. In this case,
you need to add a Book array as an attribute in Author class, and add the corresponding code to
add books to each author's array.

1.2. Aggregations and compositions

Java programming language

Page 10 of 22

There are two special types of associations: compositions and aggregations. In both, one of the classes is
considered as a whole thing, and the other one is a part of this whole thing. But... how to distinguish between
composition and aggregation? Let's see it with some simple examples:

Composition: we use it when an object is an indivisible part of another object. For example, a Room is
part of a House (and only of that house), a Square is part of a Chessboard , and so on. The main
characteristic of this type of relationship is that when we destroy the main object (the whole thing), all
objects that are part of it are also destroyed.
Aggregation: we use it when an object is part of another object (or maybe part of two or more objects)
and it can exist without the object that contains it. An example of this would be a Player , who is part
of a Team (or maybe more), or a Student , who belongs to a Classrom (or more). In these cases
when the Team or the Classroom no longer exists, players and students continue to exist, and they
can join other team/classroom.

Composition and aggregation in practice

In practice, the way we define the aggregation or composition depends on the programming language that
we are using. But, in general, if the internal attribute or instance variable that makes the composition or
aggregation can't be accessed from out of the containing class, then we have a composition. Otherwise, we
have an aggregation. Let's see this with the following example: we define a Car class that has an object of
type Engine . If we want to define a composition between these classes, we would do it this way:

class Car
{
 private final Engine engine;

 public Car(EngineParams params)
 {
 engine = new Engine(params);
 }
}

Note that we create the Engine object inside the Car class, by using some parameters specified in the
EngineParams object. This object may contain some simple data about the engine, such as power, or fuel

consumption. In this case, if the Car object is destroyed, then the Engine object will be destroyed as
well. There's no way to access the engine beyond this class. So, this is a composition.

However, if we need to define an aggregation between Car class and Engine class, then we do it like
this:

Java programming language

Page 11 of 22

class Car
{
 private Engine engine;

 public Car(Engine engine)
 {
 this.engine = engine;
 }

 public Engine getEngine()
 {
 return engine;
 }

 ...
}

In this case, we are using an external object of type Engine to create the internal Engine object of the
car (we pass this external object as a parameter to the constructor), so the engine can exist without the car: if
we destroy the car, the external engine that we used in the constructor will keep on existing. This can be
useful if we want to use the engine in another car, once the old one is destroyed.

Note that aggregations and simple associations are implemented in the same way in Java programs.
Compositions are more tricky and, unless we have a good reason to implement them, they can also act as
aggregations.

We use inheritance when we want to create a new class that takes all the features of another one, adding its
particular ones. For instance, if we have an Animal class with a set of attributes (name, weight...) and
methods, we can inherit from it to create a new class called Dog that will also have all these features, and
we can add some additional ones, such as a bark() method.

We have seen in previous sections of this document how to identify an association, by finding a Has-A
relationship between the classes involved. When talking about inheritance, we identify it with an Is-A
relationship, so that one class is a subtype of another class. In other words, it shares the features of the
ancestor and introduces some new ones. One example of this is a Car , which is a subtype of Vehicle .
Another could be a ComputerClassroom , which is a subtype of Classroom that also has computers in it.

When we want a class to inherit the features from another class in Java we use the reserved word extends
in the new class (also called child class or subclass), referring to the class from which we want to extend (also
called parent class or superclass).

2. Class inheritance

Java programming language

Page 12 of 22

class Dog extends Animal
{
 ...
}

class Car extends Vehicle
{
 ...
}

Let's go back to our bookshop example. What if we want to add information for a specific type of book, such
as comics? We can add, for instance, if they are in color or not (grayscale), and also the volume number for a
comic series. We could create a brand new class with all the information, like this one:

class Comic
{
 private String title;
 private int numPages;
 private double price;
 private boolean color;
 private int volumeNumber;

 // Constructors, getters, setters and so on...
}

But, as a comic is a subtype of book, we can inherit from Book class and automatically include all the
elements of this class (this is, the title, number of pages, price, getters, setters...). Then, we only need to care
about the new, specific information for comic elements:

Java programming language

Page 13 of 22

class Comic extends Book
{
 private boolean color;
 private int volumeNumber;

 public Comic(String title, int numPages, double price,
 boolean color, int volumeNumber)
 {
 this.title = title;
 this.numPages = numPages;
 this.price = price;
 this.color = color;
 this.volumeNumber = volumeNumber;
 }

 public boolean getColor()
 {
 return color;
 }

 public void setColor(boolean color)
 {
 this.color = color;
 }

 public int getVolumeNumber()
 {
 return volumeNumber;
 }

 public void setVolumeNumber(int volumeNumber)
 {
 this.volumeNumber = volumeNumber;
 }
}

Note that, in the constructor, we need to specify EVERY attribute for the object that we are creating. As comic
extends book functionality, we need to provide the title, number of pages and price, along with the color and
volume number. However, there's a problem if we try to compile and run previous code: title, number of
pages and price are private members of Book class, so they can't be accessed from outer classes. We should
not declare them public, since it's not recommended. Fortunately, there's an additional, intermediate access
level that we can use, which is protected.

We use the protected access modifier to let child classes access parent information. It's generally used in
attributes of a parent class, such as our Book class. We change the visibility this way:

2.1. Visibility and inheritance

Java programming language

Page 14 of 22

class Book
{
 protected String title;
 protected int numPages;
 protected double price;

 // The rest of code does not change
}

So, to sum up, now that we have learnt what inheritance means, there are four different visibility levels in Java.
Here you can see them from higher to lower:

public elements can be accessed from any other part of the code (including other classes and packages)
protected elements can only be accessed from any subclass of current class, or any class from the same
package than current class
package (default): elements are only accessible from the same package.
private elements can only be accessed from current class

Let's see all these modifiers in an example:

public class MyClass
{
 // Accessible everywhere
 public int number;
 // Accessible from subclasses or same package
 protected String name;
 // Only accessible from this class
 private float average;
 // Package level, accessible from same package
 char symbol;

When we define a class that is a subtype of another class using inheritance, we can modify or override the
behavior of parent methods in child class. For instance, printInformation method in Book class just
prints the basic information (title, pages and price):

2.2. Overriding parent's behavior. Using super

Java programming language

Page 15 of 22

public void printInformation()
{
 System.out.println("Book information:");
 System.out.println("Title: " + title);
 System.out.println("Pages: " + numPages);
 System.out.println("Price: " + price);
}

But, in this new class, we need to add specific information about the comic. So we can write again this method
in Comic class, and add an annotation called @Override to specify that this method belongs to parent
class, but we are changing its behavior in child class:

class Comic extends Book
{
 ...

 @Override
 public void printInformation()
 {
 System.out.println("Book information:");
 System.out.println("Title: " + title);
 System.out.println("Pages: " + numPages);
 System.out.println("Price: " + price);
 System.out.println("Color/Grayscale: " +
 (color?"Color":"Grayscale"));
 System.out.println("Volume: " + volumeNumber);
 }
}

Moreover, we can make use of a specific reserved word called super to get to a parent's element. In this
case, we are repeating the same code of parent's printInformation method, so we can just call this
parent's method using super :

Java programming language

Page 16 of 22

class Comic extends Book
{
 ...

 @Override
 public void printInformation()
 {
 super.printInformation();
 System.out.println("Color/Grayscale: " +
 (color?"Color":"Grayscale"));
 System.out.println("Volume: " + volumeNumber);
 }
}

NOTE: @Override annotation is NOT compulsory for the program to compile, but you should use it in
terms of code cleanliness, since you are specifying that this method does not belong to current class, it's
just another version of an existing method in parent class.

Constructors and inheritance

Let's take a look again at Comic constructor in previous example:

public Comic(String title, int numPages, double price,
 boolean color, int volumeNumber)
{
 this.title = title;
 this.numPages = numPages;
 this.price = price;
 this.color = color;
 this.volumeNumber = volumeNumber;
}

Whenever we call a constructor from a subclass, the default constructor (i.e. the one with no parameters) of
the superclass is automatically called (unless we use super to choose another constructor). So the code
above will work as long as Book has a default constructor. Otherwise, we should:

Define a default (even empty) constructor in Book class
Choose with super another different parent constructor from Comic class. In this case, we can make
use of the parameterized constructor of Book class and avoid assigning book's attributes from child
class:

Java programming language

Page 17 of 22

public Comic(String title, int numPages, double price,
 boolean color, int volumeNumber)
{
 super(title, numPages, price);
 this.color = color;
 this.volumeNumber = volumeNumber;
}

NOTE: if you use super instruction in a child constructor to invoke a specific constructor from parent
class, this instruction MUST be the first in child constructor.

We must take into account that, unless we specify another inheritance, every class in Java inherits from a
global, parent class called Object . So, if our class does not inherit from any other class, it will automatically
be a child of Object class, and thus, it can use or override methods from this class, such as equals or
toString .

If we override toString method, we can then convert our objects to strings, and then print them easily.
Let's suppose that we override this method in a Person class, so that we return a string with the person's
name and age between parentheses:

public class Person
{
 private String name;
 private int age;

 public Person(String n, int a)
 {
 name = n;
 age = a;
 }

 @Override
 public String toString()
 {
 return name + " (" + age + " years)";
 }
}

Then, we can easily print any Person object by simply calling System.out.println sentence:

2.3. Extending Object class

Java programming language

Page 18 of 22

Person p = new Person("Nacho", 40);
System.out.println(p); // Prints "Nacho (40 years)"

In the same way, we can also override equals method to determine if two Person objects are equal or
not. In this example, we say that they are equal if they have the same name and age:

public class Person
{
 private String name;
 private int age;

 public Person(String n, int a)
 {
 name = n;
 age = a;
 }

 @Override
 public String toString()
 {
 return name + " (" + age + " years)";
 }

 @Override
 public boolean equals(Object p)
 {
 Person p2 = (Person) p;
 return this.name.equals(p.name) && this.age == p.age;
 }
}

Then, we can compare two Person objects and determine if they are equal or not:

Person p1 = new Person("Nacho", 40);
Person p2 = new Person("Nacho", 39);

if (p1.equals(p2))
{
 System.out.println("They are equal!");
} else {
 System.out.println("They are different");
}

Java programming language

Page 19 of 22

The term polymorphism refers to the ability of an element to have multiple shapes or appearances. For
instance, a class can have many methods with the same name and different number or types of parameters.
This is a kind of polymorphism which is also called method overload. We can call any of these method versions
depending on our needs.

Regarding object oriented programming, polymorphism is the ability of an object to behave like another
object. This term is commonly used in inheritance to show that an object of any class can behave like any of
its subclasses. For instance, a Vehicle object of previous examples could behave like a Car object, so we
can, for instance:

Instantiate a Car object from a Vehicle variable:

Vehicle myCar = new Car(...);

Use a Car object as a parameter to a method which gets a Vehicle object.

public void aMethod(Vehicle v)
{
 ...
}

...
Car anotherCar = new Car(...);
aMethod(anotherCar);

Fill an array of Vehicle objects with any subtype of Vehicle in each position:

Vehicle[] vehicles = new Vehicle[10];

vehicles[0] = new Vehicle(...);
vehicles[1] = new Car(...);
vehicles[2] = new Van(...);
...

However, we must take into account that, when using polymorphism, the polymorphic variable can only
access the methods of the type to which it belongs. In other words, if we create a Car object and store it in
a Vehicle variable, then we will only be able to call methods or public elements from Vehicle class (not
from Car class).

2.4. Polymorphism

Java programming language

Page 20 of 22

Vehicle myCar = new Car(...);
myCar.vehicleData(); // OK
System.out.println(myCar.getNumberOfDoors()); // ERROR

If we want to detect the concrete type of an object in order to access its own methods (and not only those
inherited from parent class), then we can use instanceof operator, and then make a typecast to the
concrete type:

Vehicle[] vehicles = new Vehicle[10];
... // Fill the array with many vehicle types
for (int i = 0; i < vehicles.length; i++)
{
 if (vehicles[i] instanceof Car)
 {
 System.out.println(((Car)vehicles[i]).getNumberOfDoors());
 } else if (vehicles[i] instanceOf Van) {
 ...
 } ...
}

Exercise 4:

Improve previous exercise TeamsExample2.java in another source file called TeamsExample3.java. Add
a new class called Captain which inherits from Player class. It will have an additional attribute
specifying the years of experience of the captain. Define the corresponding constructor (using super
to fill parent's data) and modify the main function to include a Captain object in the team.

Exercise 5:

Improve previous exercise VideoGameList2.java in another source file called VideoGameList3.java. Add
a new class called PCVideoGame which inherits from VideoGame class. It will have two new
attributes called minimumRAM and minimumHD to store the minimum amount of RAM memory and
hard disk space required to play the game (both integers). Define the corresponding constructor to set
these values (and use super to call parent's constructor to set the inherited values). Then, add some
PC video games to the array and repeat the same steps than in previous exercise.

Also override toString method in VideoGame class so that we can print a video game in the screen
with its information by symply calling System.out.println .

We can create our own exceptions by creating classes that inherit from Exception class. We can then
throw a custom exception whenever we want and manage it in the method that throws it or send it up to the
method it will return to.

2.5. Exceptions and inheritance

Java programming language

Page 21 of 22

public class CustomException extends Exception
{
 public CustomException(String msg)
 {
 super(msg);
 }
}

public class Store
{
 public void welcome() throws CustomException
 {
 throw new CustomException("Error, nobody can pass!");
 }
}

public static void main(String[] args)
{
 Store store = new Store();
 try
 {
 // This method can throw a CustomException
 store.welcome();
 } catch (CustomException e) {
 System.err.println(e.getMessage());
 }
}

Exercise 6:

Create a new source file called CustomException.java. In this source file you're going to implement:

A class called NegativeSubtractException . This class will inherit from Exception and will
be created when a subtraction result is negative. The constructor will receive 2 parameters (the two
numbers that caused a negative subtraction result in order). The message generated will be:
"NegativeSubstractException: 'N1 - N2' result is negative".
In the main class create a static function that throws this type of custom exception. This method will
be called static int positiveSubtract(int n1, int n2) , and will generate and throw this
kind of exception if the result is negative. Within the main method call this method with parameters
that would give a negative result and catch the corresponding exception, showing its message on
console.

Dependency relationship establishes a connection between two classes when one of them uses an object of
the other one in some part of its code, BUT there's no association between them (this is, there's no attribute

3. Class dependency

Java programming language

Page 22 of 22

of one class in the other class).

If we take a look at this example, there's a dependency between Application and Window class. This
can be due to a method in Application class that receives a Window parameter, for instance. But there's
no Window attribute in Application class:

class Application
{
 ...

 public void aMethod(Window w)
 {
 ...
 }
}

Also, there could be a piece of code inside a method that instantiates a Window object. In this case, there
would also be a dependency relationship between these classes:

class Application
{
 ...

 public void aMethod()
 {
 Window w = new Window(...);
 ...
 }
}

