
Java programming language

Page 1 of 17

When we talk about Object Oriented Programming (OOP), we are talking about a new approach to face
software projects, in which we don't focus on what the program must do, but in which elements are part of
the system, and how they interact. These elements are categorized in classes, and from each class we create
objects in the program. In this document we will explain what a class is, and how to define them in Java to
create objects.

Let's suppose that we are going to implement an application for bookshop management. In this library there
are many books, and each one has an author, and some basic information about the book (title, number of
pages, price...). The library has many registered users or customers that want to buy some books.

If we start thinking how to implement this application with the elements that we have learnt so far, we would
define some variables to store the information: maybe a string array to store book titles, another string array
to store customer names... and so on. And then, we would define the functions to search for a book in the
array, to look for user data to login...

Object oriented programming changes the starting point of view of this project. Instead of thinking about
functionality (book search, user login...) we just think about the different elements that will be part of the
project. In this case, our application will have books, authors, customers... these elements will be the classes of
our project. In other words, classes are templates that categorize the different elements of the application.

For each class, we need to store some useful information. For instance, for every book we need to know the
title, number of pages and price. This information are the attributes of each class. Once we know the
attributes of a class, we can create objects of this class. An object is a concrete instance or representation of a
class. We could create a book with a concrete title (e.g. "Ender's game"), a concrete number of pages (e.g.
321), and so on. And there can be many objects of a class when our application is running (in our case, we
could have many books created in our bookshop). In the same way, we could define the attributes of the rest
of classes (customers, authors...) and instantiate objects of each class.

Every object in the application may need to do some operations. For instance, we may need to print the
information of a book in the screen, and customers may need to search for books, or buy them. These
operations are called methods of this class.

So with object oriented programming we need to identify these elements of the application, and define the
classes to represent them. Later, we will be able to create or instantiate objects of each class. Let's see how to
do this in Java.

Object oriented programming

Classes and objects in Java

1. Classes and objects

file:///d%3A/Trabajo/Apuntes/java/md/en/slides/05a.html
file:///d%3A/Trabajo/Apuntes/java/md/en/05a.pdf

Java programming language

Page 2 of 17

As you have seen before, every piece of code in Java is encapsulated in a class. We define classes in Java
through the class word, asigning each class a name (usually in upper case). We usually place every class in
its own source file, and this class must be public.

Inside the class code, we can place the attributes of the class, also called instance variables. These variables are
part of the class. For instance, this way we could define a Book class for our bookshop, with its own
attributes:

class Book
{
 String title;
 int numPages;
 double price;
}

Once we have defined our class(es), we can create objects of them. In order to do this, we need to declare a
variable of the same type of the class, and use the new operator to create the object:

Book myBook = new Book();

At this point, myBook becomes an object of class Book , and it contains every attribute defined in this
class. We can access each attribute using the . operator, and then check or modify its value:

Book myBook = new Book();
myBook.title = "Ender's game";
myBook.numPages = 321;
myBook.price = 11.95;

We can place this code in another class and do some more things with this object:

2. Defining classes in Java

2.1. Creating objects

Java programming language

Page 3 of 17

class BookExample
{
 public static void main(String[] args)
 {
 Book myBook = new Book();
 myBook.title = "Ender's game";
 myBook.numPages = 321;
 myBook.price = 11.95;

 System.out.println("Book information:");
 System.out.println("Title: " + myBook.title);
 System.out.println("Pages: " + myBook.numPages);
 System.out.println("Price: " + myBook.price);
 }
}

NOTE: main method is usually defined in another class apart from the elements of the program. It
makes sense, since this method does not belong to any of these classes.

NOTE: in Java, every source file must have a public class with the same name than the source file. In
other words, if we create a source file called MyClass.java , there must be a public class called
MyClass in this source file. There can be also other (non public) classes there, although this is not

usual, unless we just want one source file in our project. In this case, the class with the main function
must be the public class in the file.

If we think a little bit about previous example, what if we want to print the information of many books? We
could either:

Repeat the System.out.println instructions for every book
Define a function in BookExample class to be called whenever we want to print the information of a
book. In this case, we should pass the book as a parameter to this function in order to print the
information.

But there's one more option that we have not used by now. What if every book is in charge of printing its own
information? This way, we could define a function inside Book class, and access directly to the information
of each book:

3. Defining more class elements

3.1. Using methods

Java programming language

Page 4 of 17

class Book
{
 String title;
 int numPages;
 double price;

 void printInformation()
 {
 System.out.println("Book information:");
 System.out.println("Title: " + title);
 System.out.println("Pages: " + numPages);
 System.out.println("Price: " + price);
 }
}

Now, our main class just needs to call this function (which is a method of Book class) to invoke this
behavior:

class BookExample
{
 public static void main(String[] args)
 {
 Book myBook = new Book();
 myBook.title = "Ender's game";
 myBook.numPages = 321;
 myBook.price = 11.95;

 myBook.printInformation();

 Book myBook2 = new Book();
 myBook2.title = "The never ending story";
 myBook2.numPages = 525;
 myBook2.price = 14.15;

 myBook2.printInformation();
 }
}

Note that methods are just functions belonging to a class. In this case, we don't need to use the static
modifier (we will see in later documents what static really means). This is an instance method, this is, every
object or instance of the class has its own method and this method access current object's information.

3.2. Constructors

Java programming language

Page 5 of 17

Let's go back to previous example. What if our book had 10 o 20 attributes? Do we have to manually set every
attribute every time we instantiate an object? Fortunately, the answer to this question is NO. We can use
constructors to initialize the objects when we create them. They have the same name than the class to which
they belong, and they are defined like a method, but they don't have any return type.

Inside the code of a constructor, we typically assign initial values to instance variables or attributes, and call
any other method that may be useful at the beginning of the object's lifetime.

Let's go on with our Book class. In this case, we are going to add a constructor with no parameters, also
known as default constructor. We will use it whenever we need to create an object of this class.

class Book
{
 String title;
 int numPages;
 double price;

 // Default constructor
 Book()
 {
 title = "";
 numPages = 0;
 price = 0;
 }

 void printInformation()
 {
 System.out.println("Book information:");
 System.out.println("Title: " + title);
 System.out.println("Pages: " + numPages);
 System.out.println("Price: " + price);
 }
}

class BookExample
{
 public static void main(String[] args)
 {
 Book myBook = new Book();
 myBook.printInformation();

 Book myBook2 = new Book();
 myBook2.printInformation();
 }
}

The output that we would get in this case is different, since we have not set the instance variables manually,
but through the default constructor, so all of them are empty strings or 0.

Java programming language

Page 6 of 17

In some cases, we may need to assign some non-default values to the instance variables, so we use a
constructor with parameters. Typically, each parameter corresponds to an instance variable or attribute.

class Book
{
 String title;
 int numPages;
 double price;

 // Default constructor
 Book()
 {
 title = "";
 numPages = 0;
 price = 0;
 }

 // Parameterized constructor
 Book(String t, int n, float p)
 {
 title = t;
 numPages = n;
 price = p;
 }

 void printInformation()
 {
 System.out.println("Book information:");
 System.out.println("Title: " + title);
 System.out.println("Pages: " + numPages);
 System.out.println("Price: " + price);
 }
}

Using this constructor, we would create a Book object as follows:

Book myBook = new Book("Ender's game", 321, 11.95);

We can have as many constructors as we need. All of them will have the same name (the class name), but they
will have different parameters.

Visibility is something essential in object oriented programming. It establishes which elements are visible from
which other classes of our code. This is managed through access modifiers, special words that we can place

3.3. Visibility and encapsulation

Java programming language

Page 7 of 17

before any attribute or method of our class (including constructors) to determine their visibility. To begin with,
there are two main types of visibility:

public: we will be able to access this member directly from any part of the code, including any other
class.
private modifier, we would only be able to access this member from other members of the same class.
Out of this class, this member is not visible.

Additionally, there are two more modifiers that we can use in Java applications:

protected: we will use this modifier later, when we talk about inheritance.
package: this is the default modifier if we don't use any. It means that every class from the same package
can access this element. If we place many classes in the same source file, they belong to the same
package, so we can access any package element of any of these classes.

In general, class attributes should be defined as private, so that they can't be modified accidentally from other
classes. However, class methods are usually public, so they can be called from any other class. Our Book
class should be defined like this:

Java programming language

Page 8 of 17

class Book
{
 private String title;
 private int numPages;
 private double price;

 // Default constructor
 public Book()
 {
 title = "";
 numPages = 0;
 price = 0;
 }

 // Parameterized constructor
 public Book(String t, int n, float p)
 {
 title = t;
 numPages = n;
 price = p;
 }

 public void printInformation()
 {
 System.out.println("Book information:");
 System.out.println("Title: " + title);
 System.out.println("Pages: " + numPages);
 System.out.println("Price: " + price);
 }
}

Now, lets try to modify our main function. If we try to do something like this now, we will get a compilation
error:

class BookExample
{
 public static void main(String[] args)
 {
 Book myBook = new Book("Ender's game", 321, 11.95);
 System.out.println("This book is " + myBook.title);
 }
}

The problem is that title attribute is private, so we can't access it from BookExample class. We need a
way to access object's information from outer classes.

Java programming language

Page 9 of 17

There's a specific set of methods that we can implement to access information. These methods are called
getters and setters and we can use them to either get or modify each attribute. In general, getters are
defined with get prefix followed by the attribute name to which they refer. These would be the getters for our
Book class:

3.3.1. Getters and setters

Java programming language

Page 10 of 17

class Book
{
 private String title;
 private int numPages;
 private double price;

 // Default constructor
 public Book()
 {
 title = "";
 numPages = 0;
 price = 0;
 }

 // Parameterized constructor
 public Book(String t, int n, float p)
 {
 title = t;
 numPages = n;
 price = p;
 }

 public void printInformation()
 {
 System.out.println("Book information:");
 System.out.println("Title: " + title);
 System.out.println("Pages: " + numPages);
 System.out.println("Price: " + price);
 }

 // Getters
 public String getTitle()
 {
 return title;
 }

 public int getNumPages()
 {
 return numPages;
 }

 public double getPrice()
 {
 return price;
 }
}

Java programming language

Page 11 of 17

As you can see, each getter method just returns the associated attribute. We can use them in previous
example to access book information:

class BookExample
{
 public static void main(String[] args)
 {
 Book myBook = new Book("Ender's game", 321, 11.95);
 System.out.println("This book is " + myBook.getTitle());
 }
}

In the same way, setters let us modify the values of the attributes in a safe way. What if we try to assign a
negative number of pages? Setter method can take care of this, and make sure that the value we are
assigning is correct:

Java programming language

Page 12 of 17

class Book
{
 private String title;
 private int numPages;
 private double price;

 // Default constructor
 public Book()
 {
 title = "";
 numPages = 0;
 price = 0;
 }

 // Parameterized constructor
 public Book(String t, int n, float p)
 {
 title = t;
 numPages = n;
 price = p;
 }

 public void printInformation()
 {
 System.out.println("Book information:");
 System.out.println("Title: " + title);
 System.out.println("Pages: " + numPages);
 System.out.println("Price: " + price);
 }

 // Getters

 public String getTitle()
 {
 return title;
 }

 public int getNumPages()
 {
 return numPages;
 }

 public double getPrice()
 {
 return price;
 }

 // Setters

Java programming language

Page 13 of 17

 public void setTitle(String t)
 {
 title = t;
 }

 public void setNumPages(int n)
 {
 if (n > 0)
 numPages = n;
 }

 public void setPrice(double p)
 {
 if (p >= 0)
 price = p;
 }
}

Note that, for numPages and price attributes, we check if new value to be assigned (which is passed as a
parameter to the method) is correct. This way, we protect the attribute from wrong values. This is called
encapsulation (hide private attribute and only allow the access through getters and setters). We can even use
these setters from the constructors, to make sure we also assign correct values there:

public Book(String t, int n, float p)
{
 title = t;
 setNumPages(n);
 setPrice(p);
}

Exercise 1:

Create a source file called TeamsExample.java. Define a class called Team with some specific
information about the teams, such as the team name and the foundation year. Add a constructor to this
class to specify both attributes, and the corresponding getters and setters. Then, define a main class
called TeamsExample with a main function that creates a Team object with the values of your choice,
and prints the information in the screen.

To finish with this introduction to class management in Java, let's check some additional concepts related with
class definition and object instantiation.

4. Other aspects regarding classes and objects

4.1. More about constructors and attributes

Java programming language

Page 14 of 17

If we don't define any constructor in our class, Java automatically adds a default constructor (with no code nor
parameters), so that we can instantiate objects of our class anyway. For instance, if we have this simple class:

public class Person
{
 String name;
 int age;
}

We can create a Person object like this, even if we have not specified such constructor:

Person p = new Person();

However, if we set any constructor in our class, then this default constructor that has been automatically
added is no longer available. In other words, if we add this constructor to previous class:

public class Person
{

 String name;
 int age;

 public Person(String n, int a)
 {
 name = n;
 age = a;
 }
}

Then we are forced to instantiate objects of our class with this constructor (or any other constructor that we
have explicitly declared):

Person p = new Person("Nacho", 40); // OK
Person p2 = new Person(); // ERROR!

If we don't assign any value to a class attribute, it gets a default value depending on the data type. For
numeric values (integers or real numbers), this value is 0 . Regarding characters, this value is the first
character code '\u0000' . Strings get null as its default value, and boolean variables are false by
default.

4.1.1. Default values for attributes

Java programming language

Page 15 of 17

However, it is not a good practice to rely on these default values in our programs. It is better to assign an
initial value to our variables instead.

NOTE: these default values are NOT applied to local variables. In other words, if we declare an integer
variable inside a function or method, it will not be assigned a default value, and we will get a
compilation error if we don't assign it an appropriate one. But, if we declare an array of integer values,
they will all be set to 0 initially, even if the array is local to a method.

In every class that we are implementing, we can use the reserved word this to refer to any internal element of
the class, either an attribute, a method or a constructor. Its main typical use relies on constructors, to
distinguish between the attributes and the constructor parameter(s) when they have the same name:

class Book
{
 private String title;
 private int numPages;
 private double price;

 public Book(String title, int numPages, float price)
 {
 this.title = title;
 this.numPages = numPages;
 this.price = price;
 }

But we can also use this in any other part of our code:

class Book
{

 ...

 public void setPrice(double price)
 {
 if (price >= 0)
 this.price = price;
 }
}

Keep in mind that the usage of this is (usually) optional, but many IDEs generate code templates using this
pattern, so you should get used to it.

4.2. Using this

Java programming language

Page 16 of 17

We can define an array of objects of a class, like we did with primitive data in previous sections. For instance,
this is how we would create an array to store up to 10 books:

Book[] books = new Book[10];

However, we need to instantiate (create) a new object for every position of the array in order to add it to this
position:

books[0] = new Book("Ender's game", 321, 11.95);
books[1] = new Book("The never ending story", 525, 14.15);
...

// Or with a loop:
for (int i = 0; i < books.length; i++)
{
 books[i] = new Book(...);
}

Exercise 2:

Create a program called VideoGameList.java to store objects of a class called VideoGame that you
must define. For each videogame, we are going to store its title, genre and price. Add also the
corresponding getters, setters and constructor to set these values. Define a main, public class called
VideoGameList in the same source file. Then, in the main method of this class, create an array of 5

video games, ask the user to fill de information of each videogame, and then show the title of the
cheapest and the most expensive video game of the array.

Class diagrams are a powerful tool in software engineering in order to graphically represent the classes of a
project and their relationships. You can learn more about class diagrams here. As you can see, classes in these
diagrams are represented by a box divided in 3 sections: one to specify the class name, another one for the
attributes, and the last one for the methods (including constructors):

In order to specify each attribute or method, we can set its visibility using the + and - symbols
(representing public and private visibility, respectively). This is how we could represent a BankAccount class

4.3. Arrays of objects

5. Class diagrams in Java

https://nachoiborraies.github.io/entornos/md/en/04e

Java programming language

Page 17 of 17

with basic information and methods:

Regarding Java, we also need to specify the data type of each attribute, along with the type of every method
(including parameters and return type). This is an example of our Book class represented in a class diagram:

Exercise 3:

Complete the class diagrams proposed along this document, including Java data types for every
attribute, constructor or method.

https://nachoiborraies.github.io/entornos/md/en/04e

