
Java programming language

Page 1 of 7

Along the development of a Java program we can find two types of errors: compilation errors and runtime
errors. The first ones are detected by the compiler as we type the code, whereas runtime errors are difficult to
predict (in general): network errors, dividing by zero, file not found... Most of these runtime errors can be
handled by exceptions.

An exception is an event that happens during the execution of a program and makes it exit from its normal
instruction flow. This way, we can deal with the error in a smart way, by separating the "normal" code from the
error itself. Whenever an exception occurs, we say that it has been thrown, and we can choose among
propagating it (throwing it again) or catching it and process the error. We will see these two options in a few
minutes.

Runtime errors can be of two main types:

Errors: in this case, we talk about fatal errors that happen during the execution of a program, such as
hardware errors, memory errors... These errors can't be managed from within a Java application.
Exceptions: they are non-critical errors that can be managed (files not found, parsing errors...). Inside this
type of errors, we can talk about:

Runtime exceptions: they don't need to be catched, and they are difficult to predict, in general. For
instance, assigning null to a variable, or going beyond the boundaries of an array.
Checked exceptions: these exceptions need to be catched, or declared to be thrown. In other
words, if we use a function that can throw these type of exceptions, the compiler will complain if we
don't catch the exception or throw it again. For instance, whenever we call the Thread.sleep
instruction, we need to catch or throw an InterruptedException .

However, every type of exception is a subtype of the Exception main type. This generic type stores the
error message produced by the exception. There are some other subtypes that store more specific
information. For instance, ParseException is a subtype of Exception that is thrown whenever data
can't be properly parsed. It stores the error message along with the position where the error was found.

Functions and error handling

Exception management

1. What is an exception?

1.1. Exception types

1.2. Types of exception management

file:///d%3A/Trabajo/Apuntes/java/md/en/slides/04c.html
file:///d%3A/Trabajo/Apuntes/java/md/en/04c.pdf

Java programming language

Page 2 of 7

Whenever an exception is caused in a program, we can decide how to treat it. Basically, we have two options
in our code:

Catch the exception. This means that exception is "destroyed" and we can show a controlled, customized
error message instead.
Throw the exception. In this case, we don't want to care about the exception, and we delegate in another
piece of code to treat it.

In next sections of this document we will learn how to manage these two options.

Whenever a piece of code can throw an exception, we can catch it by using a try..catch block. We put
inside the try clause the code of our program that may produce an exception, and we use the catch
clause to respond to the specified error. We can just output an error message, or return a given value, among
other possible options.

This example tries to convert a string into an integer value. If the conversion can't be done because the input
is not valid, then a NumberFormatException will be thrown, and we can produce an appropriate error
message in the catch clause.

int number;
string text = ... // Whatever value

try
{
 number = Integer.parseInt(text);
} catch (NumberFormatException e) {
 System.err.println("Error parsing text: " + e.getMessage());
}

The getMessage method gets the error message produced by the exception. See that we are using
System.err instead of System.in because we are printing an error, and then we should use the default

error output instead of the default "normal" output.

We can also use printStackTrace method to print a complete stack trace of the error, so that we can see
the call stack that have produced the error (this is, methods that have been called until the error was
produced).

2. Catching exceptions

Java programming language

Page 3 of 7

int number;
string text = ... // Whatever value

try
{
 number = Integer.parseInt(text);
} catch (NumberFormatException e) {
 e.printStackTrace();
}

We can add as many catch clauses as we need, and each one can represent a specific exception type:

try
{
 // Code that may fail
} catch (NumberFormatException e1) {
 // Error message for number format
} catch (ArithmeticException e2) {
 // Error message for dividing by zero
...
} catch (Exception eN) {
 // Error message for any other error
}

However, we must put these catch clauses in order, so that the most generic ones are placed at the end,
because the program will enter at the first catch clause that matches the exception produced. In other
words, if we put the catch(Exception) clause at the beginning, the rest of clauses will have no effect,
since any of them are subtypes of Exception and thus, they will be catched by the first clause.

There are some instructions that force us to deal with a specific type of exception. For instance, if we call
Thread.sleep instruction, the compiler will ask us to deal with an InterruptedException . We can do

it this way:

try
{
 Thread.sleep(5000);
} catch (InterruptedException e) {
 System.err.println("Interruption during sleep: " + e.getMessage());
}

However, we can also use a generic Exception element in the catch clause to deal with any type of
exception. We only need to specify concrete types of exceptions if we want to manage different catch
clauses, and then, produce different error messages depending on the exception produced.

Java programming language

Page 4 of 7

The second way of managing an exception is throwing it. This way, we pass it to the next function in the stack
call... until we reach the main function (in this function we should no longer throw exceptions, we must catch
them).

For instance, this function receives two numbers and returns the division n1 / n2. But if n2 is 0, we can't divide
them, so in this case we can throw a new exception to indicate that data is not correct:

public static int divide (int n1, int n2)
{
 if (n2 == 0)
 throw new ArithmeticException("Can't divide by zero");
 else
 return n1 / n2;
}

So, if we try to use this method in our program, we must be aware that an exception can be thrown, and catch
it:

public static void anotherFunction()
{
 int number1, number2;

 // ... Ask user to fill number1 and number2

 try
 {
 int result = divide(number1, number2);
 }
 catch (ArithmeticException e)
 {
 System.err.println("Error: " + e.getMessage());
 }
}

Now, let's have a look at this example:

3. Throwing exceptions

Java programming language

Page 5 of 7

public static void a() throws InterruptedException
{
 throw new InterruptedException ("Exception in a");
}

public static void b() throws InterruptedException
{
 a();
}

public static void c() throws InterruptedException
{
 b();
}

public static void d() throws InterruptedException
{
 c();
}

public static void main(String[] args)
{
 try
 {
 d();
 } catch (InterruptedException e) {
 System.err.println("Exception: " + e.getMessage());
 }
}

This example produces an InterruptedException in function a (we can produce exceptions by
throwing new exception elements of any type). Then, as b function calls a function, it is asked to either
catch the exception or throw it. By adding the throws clause in the function definition, we explicitly say that
this function can throw InterruptedException exceptions. This chain goes on with functions c and
d . Finally, main function calls function d , and as this function can throw InterruptedExceptions, we need

to catch the possible exception in main.

All this chain of exception throwing have been originated from a function, since it throws a checked
exception that needs to be catched or thrown. If this function had thrown a runtime exception (such as
NullPointerException), then none of the throws clauses would have been necessary, since it is a non

checked exception. The example would have been like this:

Java programming language

Page 6 of 7

public static void a()
{
 throw new NullPointerException ("Null pointer exception in a");
}

public static void b()
{
 a();
}

public static void c()
{
 b();
}

public static void d()
{
 c();
}

public static void main(String[] args)
{
 d();
}

However, if we try to run this last example, a NullPointerException exception will be produced in our
console. As this is a non checked exception, we don't need to catch it but, as soon as it is produced, we
should, to avoid these huge error messages in the console as we run the program:

Exception in thread "main" java.lang.NullPointerException:
Null pointer exception in a
 at Pruebas.a(Pruebas.java:6)
 at Pruebas.b(Pruebas.java:11)
 at Pruebas.c(Pruebas.java:16)
 at Pruebas.d(Pruebas.java:21)
 at Pruebas.main(Pruebas.java:26)

We can even throw (or declare to be thrown) as many exception types as we want, separated by commas in
the throws clause. Then, we will need to catch all of them sooner or later:

Java programming language

Page 7 of 7

public static void multipleExceptionsFunction()
throws IOException, InterruptedException
{
 ...
 if (...)
 throw new IOException("IOException produced");
 ...
 if (...)
 throw new InterruptedException("Interrupted!!");
}

...

public static void anotherFunction()
{
 try
 {
 multipleExceptionsFunction();
 } catch (IOException e1) {
 System.err.println(...);
 } catch (InterruptedException e2) {
 System.err.println(...);
 }
}

Exercise 1:

Create a program called CalculateDensity that asks the user to type a weight (in grams) and a volume
(in liters). Then, the program must output the density, which is calculated by dividing weight / volume.
The program must catch every type of possible exception: NumberFormatException and
ArithmeticException whenever they can be thrown. You can only use Scanner.nextLine

method to get the user input in this exercise.

Exercise 2:

Create a program called WaitApp with a function called waitSeconds that will receive a number of
seconds (integer) as a parameter. Internally, this function will call Thread.sleep method to pause the
program the given number of seconds (this function works with milliseconds, so you must convert
seconds to milliseconds when calling it). As the sleep method can throw an
InterruptedException element, you will need to deal with it. In this case, you are asked to throw

the exception from waitSeconds method, and catch it in the main method, that will call waitSeconds with
the number of seconds specified as a main parameter (inside the String[] args parameter). After
waiting the specified number of secods, the program will prompt a "Finish" message before exiting.

