
Java programming language

Page 1 of 5

A regular expression (or regex in its abbreviated form) is a sequence of special characters that lets us detect
some patterns in texts. For instance, an id card made of 8 digits and an uppercase letter, or an e-mail
containing a @ . Using regular expressions, we can easily detect these patterns in a given text and, also, force
a text to meet a given pattern when it's being entered by the user.

In order to work with regular expressions in Java, we need to use some classes from java.util.regex
package. To be more precise, we are going to rely on:

Pattern class, that lets us define a given pattern for a regular expression
Matcher class, that lets us check if a givent text meets a given Pattern.

Regarding Pattern class, there are a couple of interesting methods inside it that we need to manage:

compile : it creates a Pattern object for a given regular expression
matcher : it returns a Matcher object to match a pattern with a text

Inside Matcher class, we can use these methods:

find : checks if a given pattern is found in a text
matches : checks if the whole text meets a pattern (not only a part of it). There is also a static method

in Pattern class, Pattern.matches that produces the same result.

Let's check in the following example if a text contains a digit between 0 and 9. This digit can be represented
by the symbol \d , so we use it inside the pattern, this way:

Static data types

Using regular expressions

1. Basic regex syntax

1.1. Pattern class

1.2. Matcher class

1.3. Example

file:///d%3A/Trabajo/ApuntesGitHub/java/md/en/slides/03d.html
file:///d%3A/Trabajo/ApuntesGitHub/java/md/en/03d.pdf

Java programming language

Page 2 of 5

String text = "Hi, my name is Nacho and I'm 44 years old";
Pattern p = Pattern.compile("\\d");
Matcher m = p.matcher(text);

if (m.find())
{
 System.out.println("The text contains digit(s)");
}
else
{
 System.out.println("The text does not contain any digit");
}

Note that we need to escape the \ when we place it inside the string, as \\d

In this table you can find some basic symbols that we can use inside patterns.

Symbol Meaning

x 'x' character

\t Tabulation

\n New line

[abc] Character 'a', 'b' or 'c'

[^abc] Anything but characters 'a', 'b' or 'c'

[a-zA-Z] Range from 'a' to 'z' or from 'A' to 'Z'

. Any character

^ Beginning of line (there's nothing before)

$ End of line (there's nothing after)

\d Digit from 0 to 9

\D Anything but a digit

\s Spacing char (white space, tab, new line...)

\S Anything but a spacing char

\w Alphanumeric char (letters, digits and underscore)

\W Anything but an alphanumeric char

(one|two) Text 'one' or text 'two'

1.4. Some basic symbols

Java programming language

Page 3 of 5

With these symbols, we can made expressions such as:

Text finished with a dot (we need to escape the dot with \):

Pattern p = Pattern.compile("\\.$");

Text made of 4 digits

Pattern p = Pattern.compile("^\\d\\d\\d\\d$");

The seasons of the year:

Pattern p = Pattern.compile("(winter|spring|summer|autumn)");

Exercise 1:

Create a project called CarIDCheck that asks the user to enter a cad id, and checks if it's made of 4
digits followed by 3 uppercase letters. We are not going to check if these letters are vowels or not, we
just check if they are uppercase.

In order to make some more complex expressions, we need to make use of some additional symbols in the
pattern. To be more precise, we need to specify the cardinality of some parts of the expressions, in orde to
shorten them. This is a list of cardinality symbols that you can use in your patterns:

Symbol Meaning

x? x symbol appears 0 or 1 times

x+ x symbol appears 1 or more times

x* x symbol appears 0 or more times

x{n} x symbol appears n times

x{n,} x symbol appears at least n times

x{n, m} x symbol appears between n and m times (both included)

This way, we can easily check:

If a text is made of 4 digits with this:

2. Some complex expressions

Java programming language

Page 4 of 5

Pattern p = Pattern.copile("^\\d{4}$");

An id card made of 8 digits and an uppercase letter:

Pattern p = Pattern.copile("^\\d{8}[A-Z]$");

Exercise 2:

Repeat previous exercise using cardinality symbols

Exercise 3:

Create a program called EmailChecker that asks the user to enter an e-mail and checks if it's valid. We
will consider that a valid e-mail will be made of alphanumeric characters (at least one), followed by a
@ , one or more alphanumeric characters, a dot and one or more alphanumeric characters. So
myEmail@one.com is a valid e-mail, but myOtherMail@aaa is not.

Groups lets us isolate some parts of a text that meet a given pattern, so we can treat them later in the code.
We can use group method inside Matcher class to detect groups, and each group must be defined
between parentheses (...) in the pattern. Groups are explored from left to right.

Let's see how groups work with the following example: we are going to get every sequence of 4 digits in a
text:

String text = "Einstein was born in 1879 and Edison in 1847";
Pattern p = Pattern.compile("(\\d{4})");
Matcher m = p.Matcher(text);

if (!m.find())
{
 System.out.println("The text has no sequence of 4 digits");
}
else
{
 do
 {
 String data = m.group();
 System.out.println("Found " + data);
 }
 while(m.find());
}

3. Using groups

Java programming language

Page 5 of 5

As you can see, every time we call group method we move to next group identified in the text, until there
are no more matches pending.

We can define more than one group in a single expression. In this case, group method admits an additional
parameter indicating which of the groups we are choosing (starting from 1).

The following example identifies names and surnames in a text:

String text = "Albert Einstein was born in 1879" +
 " and Thomas Edison in 1847";
Pattern p = Pattern.compile("([A-Z][a-z]+) ([A-Z][a-z]+)");
Matcher m = p.Matcher(text);

if (!m.find())
{
 System.out.println("The text has no names");
}
else
{
 do
 {
 String name = m.group(1);
 String surname = m.group(2);
 System.out.println("Found " + name + " " + surname);
 }
 while(m.find());
}

It would output Found Albert Einstein in the first iteration and Found Thomas Edison in the second one.

Exercise 4:

Create a program called HourIdentifier that looks for hours in a text. An hour is made of two digits,
followed by : , and two digits. For instance, 08:45 . We are not going to check if the hour is valid or
not, we just need to identify them. Then, store these hours in a list and show them in ascending order.

3.1. Multiple groups

