
Java programming language

Page 1 of 5

If we want to work with strings in Java, we have the String class, with some useful methods that we can
use: convert to upper or lower case, get a substring, find a text... You can have a whole list of available
methods in the String official documentation. Let's explore some of them.

We can create a string in many different ways: with a constant value, asking the user to type something...

String text = "Hello world";
String name = scanner.nextLine();

We can also concatenate strings with the + operator, or in some cases with += operator (if we want to
add a string at the end of another).

text = text + ", how are you?";

We can't treat a string as a char array (as in C++ or C#), and get to each character with the corresponding
index between square brackets. If we want to get the character at a given position, we need to use the
charAt method. We can also get the length of a string with its length() method.

for (int i = 0; i < text.length(); i++)
 System.out.println(text.charAt(i));

Regarding conversions, we can easily convert a non-string variable into a string just joining it with an empty
string. Alternatively, we can also use String.valueof instruction for this purpose:

int number = 23;
String text = "" + number;
String text2 = String.valueOf(number);

Static data types

Strings

1. Basic string management

file:///d%3A/Trabajo/Apuntes/java/md/en/slides/03c.html
file:///d%3A/Trabajo/Apuntes/java/md/en/03c.pdf
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html

Java programming language

Page 2 of 5

In this section we are going to explore some more advanced features of strings, such as comparing strings,
taking substrings in a string variable, splitting a string in parts and so on.

We can compare two strings (alphabetically) in some different ways. If we want to know which is greater or
lower, we can use the compareTo method. It returns a negative number if the string on the left is lower, 0 if
both strings are equal, or a positive number if the string on the right is lower.

if (text1.compareTo(text2) < 0)
 System.out.println("Second text is greater");

If we want to check if two strings are equal, we use the equals method (remember, we must NOT use the
== comparator for this purpose). We can also use equalsIgnoreCase method if we want to ignore if

strings are in uppercase or lowercase.

if (text1.equals(text2))
 System.out.println("Texts are equal");

if ("hello".equalsIgnoreCase("HELLO"))
 System.out.println("Text are equal ignoring cases");

We have a wide variety of instructions inside string elements to find texts. For instance, if we only want to
know if a text contains a given subtext, we can use contains method, that returns a boolean:

if (text.contains("hello"))
 System.out.println("There is a 'hello' in the text");

If we want to know the index at which a given subtext appears, we can choose among indexOf (gets the
first occurrence of the subtext, or -1 if it does not exist) or lastIndexOf (gets the last occurrence of the
subtext, or -1 if it does not exist)

int pos = text.indexOf("hello");
if (pos >= 0)
 System.out.println("There is a 'hello' at position" + pos);

2. Some advanced operations with strings

2.1. String comparison

2.2. Finding texts in strings

Java programming language

Page 3 of 5

If we want to know if a text starts with a given prefix or ends with a given suffix, we use the startsWith or
endsWith methods, which return a boolean

if (text.startsWith("Hello"))
 System.out.println("Text starts with 'Hello'");

We can convert the whole string to upper and lower case with toUpperCase and toLowerCase methods:

String text = "Hello world";
String textUpper = text.toUpperCase(); // "HELLO WORLD"

We can get a substring of a given string with the substring method. It has two parameters: the index from
which we must start getting the substring (starting at 0), and the index at which we must stop getting the
string (excluded). If this second parameter is omitted, it returns the resulting string from the initial index to the
end of the string. For instance, "Welcome".substring(3, 5) returns "co" (indexes 3 and 4 of the string).

We can replace a substring with another one with the replace method. It has two arguments: the old text
and the new text, and it returns the resulting string. It replaces EVERY occurrence of the old string with the
new string.

String result = text.replace("Hello", "Good morning");

There are some other options for this purpose, such as replaceAll method, which uses regular
expressions to match the text to be replaced, or replaceFirst , which only replaces the first occurrence of
the old text with the new one.

We can split a string using a delimiter with the split method. It returns an array with the resulting parts.

String text = "Hello world";
String[] parts = text.split(" ");
// Two parts, "Hello" and "world"

Finally, we can also do the opposite operation, this is, joining parts of a string with a common delimiter, using
String.join method. We need to specify the delimiter, and then the array or sequence of texts to be

joined.

2.3. String conversions

Java programming language

Page 4 of 5

String[] parts = {"One", "Two", "Three"};
String result = String.join(",", parts); // "One,Two,Three"

Exercise 1:

Create a program called SortJoin that asks the user to enter a list of names separated by whitespaces.
Then, the program must split the string, sort the names alphabetically and output them separated by
commas. For instance, if the user types this name list: Susan Kailey William John , then the
program must output John, Kailey, Susan, William .

Exercise 2:

Create a program called CheckMessages that asks the user to type 10 strings. The program must store
them in an array, and then replace the text "Eclipse" with "IntelliJ" in every string that contains "Eclipse".
The program must output the updated version of the strings stored in the array, once the replacement
has been done.

Exercise 3:

Create a program called LispChecker. LISP is a programming languages where every instruction is
enclosed in parentheses. This could be a set of instructions in LISP:

(let ((new (x-point a y))))

You must implement a program that takes a string with LISP instructions (just one string) and then check
if the parentheses are correct (this is, the number of opening parentheses and closing parentheses are
the same).

This section is about static data types. We have seen that these types don't change their size along program
execution. However, we can increase or decrease the size of a string by concatenating or removing pieces of
text. So, how can we say that a string is a static data size?

We need to take into account that Strings in Java are ALWAYS immutable, as in many other programming
languages. So, every transformation that we need to do over a string needs to be assigned to a new (or old)
variable. That's why methods such as toUppeCase or substring always return a new string, they never
affect the original string. However, we can always re-assign the old string with this new value:

3. Strings and static data

Java programming language

Page 5 of 5

String text = "Hello world";

// This way we don't affect original text
String newText = text.toUpperCase();

// This way we modify original variable, and it points
// to this new text (old text is lost in memory)
text = text.toUpperCase();

Due to this, joining these instructions over strings is not very efficient, since we need to create a new string in
memory for every new operation. Instead of this, we can also use StringBuilder element instead.

Through SceneBuilder element we can create editable strings. This increases the speed of certains
operations, and decreases the use of memory. In order to create these elements, we just need to use new
operator with the initial value of the string to be stored:

StringBuilder text = new StringBuilder("Hello");

Then, we have some methods available to perform some editing tasks:

append method lets us add new strings at the end of the existing one, just like + operator does with
original strings
delete method removes a fragment in the string, given the initial and final position to be removed.
insert method adds a new string in the middle of the existing one (to be more precise, at the given

starting index)
toString method converts this StringBuilder element into a common String

Besides, we have some other methods available, whose behavior is similar to the original methods in
String: charAt , length , indexOf , lastIndexOf ...

Here you can find an example of usage:

StringBuilder text = new StringBuilder("Hello");
text.append(" world"); // text = "Hello world"
text.insert(5, " my"); // text = "Hello my world"
System.out.println(text.toString()); // "Hello my world"
System.out.println(text.indexOf("my")); // 6
text.delete(5, 8); // text = "Hello world"

3.1. Using StringBuilder

