
Java programming language

Page 1 of 3

Iterative structures, also known as loops, can repeat a set of instructions a given number of times, or as long as
a condition is true. This way, we avoid writing this set of instructions more than once if we want to repeat it.
Now, we are going to see the main iterative structures provided by Java, although we will learn some more in
later documents.

This clause is used to repeat a given set of instructions while a given condition (or set of conditions) is true.
For instance, this example counts from 1 to 10:

int n = 1;
while (n <= 10)
{
 System.out.println(n);
 n++;
}

As soon as the condition inside the while clause is false, the program exits the loop and runs next instruction
beyond this loop. Take into account that this instruction can be simple or complex:

int n = 1;
while (n >= 1 && n <= 10)
{
 ...
}

This clause si similar to the previous one, but the condition is evaluated at the end of the loop, instead of the
beginning. If we do the same loop than in previous example with a do..while structure, it would look like
this.

Control structures

Iterative structures

1. The "while" clause

2. The "do..while" clause

file:///d%3A/Trabajo/Apuntes/java/md/en/slides/02c.html
file:///d%3A/Trabajo/Apuntes/java/md/en/02c.pdf

Java programming language

Page 2 of 3

int n = 1;
do
{
 System.out.println(n);
 n++;
} while (n <= 10);

We will use this loop when we don't know how many iterations are expected, but we know that there will be
(at least) one iteration. It is very usual when we ask the user to type something and then check the input and
ask the user again. On the contrary, while loop is better when we don't even know if there will be one
iteration.

We will use this loop when we know how many iterations are expected. It has 3 parts on it:

The declaration of a counter
The condition to repeat the bucle (similar to while or do..while condition)
The increment or decrement for the counter (generally to reach the end of the loop when the condition
turns into false)

The counter from 1 to 10 should be done with this structure preferably, and it would look like this:

for (int n = 1; n <= 10; n++)
{
 System.out.println(n);
}

Note that we can declare variables in for loops (and in the middle of other code, as in other languages
such as C#).

There is another way of using the for clause, applied to collections or arrays. It consists in using a variable
with the same type, this way:

for (int number: numbers)
 System.out.println("" + number);

where numbers is expected to be a collection or array of integers. This structure is equivalent to the
foreach structure of other languages such as C#, and is expected to be used in a read-only way (only to

check the values, but not to modify them).

3. The "for" clause

3.1. Another "for"

Java programming language

Page 3 of 3

Exercise 1:

Create a program called GroupPeople that asks the user to enter how many people is going to attend
to a conference. The program must create groups of (preferably) 50 people. Whenever this is not
possible, then it will attempt to create groups of 10 people, and finally it will create groups of 1 person.
The program must output how many groups of each category are necessary. For instance, if 78 people
are going to attend to the conference, then we need 1 group of 50 people, 2 groups of 10 people and 8
groups of 1 people.

Exercise 2:

Create a program called SumDigits that asks the user to enter numbers (integer values) until he enters
0. The program must sum up all the numbers entered by the user and then show the final result, and
how many digits it has. For instance, if the user types 12, 20, 60, 33, 99 and 0, then the program must
output: "The result is 224, and it has 3 digits".

