
Java programming language

Page 1 of 6

In previous sections we have talked about variables. We have learnt that we can use them to store values, and
these values can be of different types. In this section we are going to learn about the basic data types
provided by Java, and how we can use them to store values in our programs.

There are two main numeric types in Java:

Integer values, which can be represented by byte , short , int or long data types
Real value, which can be represented by float or double data types.

As we have said before, we can choose among 4 different data types to represent integer values. The choice
can be determined by the range of values that we need to deal with. In this table you can see the range of
values allowe by each data type:

Data type Memory (bytes) Range allowed

byte 1 -128 to 127

short 2 -65536 to 65535

int 4 -2.147.483.648 to 2.147.483.647

long 8 up to 18-19 digit numbers

For instance, if we want to manage the age of a person, we could use an int variable, but we would waste
some memory, since this age is usually lower than 100, and we would just need a single byte to store it. We
could use a byte variable instead:

byte age = 34;

However, if we want to store the price of an object, we should use a short or even an int variable:

Basic elements of a Java program

Basic data types

1. Numeric types

1.1. Integer data types

file:///d%3A/Trabajo/Apuntes/java/md/en/slides/01c.html
file:///d%3A/Trabajo/Apuntes/java/md/en/01c.pdf

Java programming language

Page 2 of 6

short price = 4200;
int higherPrice = 2223424;

If we want to deal with real numbers, Java provides two different data types, each one with its own memory
space and range:

float data type needs 4 bytes of memory, and lets us manage numbers with up to 6-7 significant
numbers. For instance, if we want to store PI value in a float variable with just 4 or 5 fraction digits (i.e.
3.14159), we can use a float variable.

float pi = 3.14159;

double data type needs 8 bytes of memory, and lets us manage numbers with up to 15 significant
numbers. This way we can store more fraction digits, if we want to:

double pi = 3.14159265359;

Regarding float variables, if we want to assign them a direct value, we must specify an f symbol at the
end of this value. So the example given before should be written like this (otherwise we'll get a compilation
error):

float pi = 3.14159f;

When we are working with numbers, we may need to do some operations that exceed the maximum range
allowed by a data type. For instance, if we are working with two byte values and we add them, we may
exceed the maximum range allowed by byte data type, which is 127. This situation is called overflow.

So, we must take care of the data types that we choose for each situation, taking into account the different
operations that we expect to do with these variables.

In order to deal with texts, Java provides two data types:

char data type if we want to use single characters or symbols

1.2. Real data types

1.3. The overflow problem

2. Text types

Java programming language

Page 3 of 6

String data type if we want to manage complex texts (with more than one character or symbol).

Regarding char data type, it is 2 bytes length, so that we can represent any possible character or symbol.
We just declare the corresponding variable, and assign the character represented between single quotes:

char symbol = 'a';

If we want to work with longer texts, then we use String variables, specifying the text between double
quotes:

String text = "Hello world";

There are some special characters that can't be represented easily with the keyboard in a source file. For
instance, the new line character, or even the quotes inside a quoted text. For this purpose, we can use escape
sequences, this is, special symbols that represent these unwritable elements. This is a list of the most popular
escape characters or sequences:

Sequence Meaning

\n New line

\t Tabulation

\" Double quotes

\' Single quotes

\\ Backslash \

These escape sequences can be placed inside a char or string value:

char newLine = '\n';
String message = "Hello world.\n\"Quoted text\"";

We can do some basic operations with characters. You need to take into account that Java internally treats
characters as numeric values, assigning each character a numeric code. For instance, alphabet characters are
represented by consecutive numeric values, from a to z . This way, if we add 3 to a value, we will get
d value:

2.1. Escape sequences

2.2. Character operations

Java programming language

Page 4 of 6

char symbol = 'a';
symbol += 3;

We can also use + operator in texts (strings), but in this case we are not doing any addition, we are just
concatenating texts or expressions. This expressions produces the text "Hello3":

String text = "Hello" + 3;

Keep in mind that you can't mix arithmetic and text operations in a single line directly. The following
expression produces a result of "Hello32":

String text = "Hello" + 3 + 2;

If you want to calculate the addition and then concatenate the result, then you must prioritize the addition
using parentheses. This expression produces a result of "Hello5":

String text = "Hello" + (3 + 2);

Sometimes we need to convert a value of some type into another different type. The way we do this step
depends on the types involved.

The conversions between numeric values are quite straightforward. We just need to do a typecast, this is,
specify between parentheses the data type to which we want to convert the expression. In this example, we
are converting pi real value to an integer (so we get 3 as final result):

float pi = 3.1416f;
int piInteger = (int)pi;

The opposite step can also be done. In this case, we are converting an integer value into a double one (the
final value will be 5.0):

3. Conversion between data types

3.1. Some basic conversions. Typecasting

Java programming language

Page 5 of 6

int number = 5;
double realNumber = (double)number;

However, this step is NOT necessary if the source type is smaller than the destination type. For instance, a
byte doesn't need to be converted into int :

byte value = 3;
int number = value;

Typecast can be useful, for instance, to convert integer divisions into real ones. This example divides two
integer values, but, as we are converting one of them into float , then the final result will be a real number,
with the corresponding fraction digits, and can be stored in a float variable:

float result = (float) 3 / 2;

In general, every arithmetic operation tries to produce a result of the same type of its operands (if we divide
two integers, we get an integer result, for instance). However, in certain operations, such as additions or
multiplications, Java tries to convert the result to a higher type, and we need to typecast it. In this example, we
try to add two byte values, but Java tries to convert the result to int , so we need to specify that we want to
keep using a byte as a result (even though we could cause an overflow):

byte a = 3, b = 2;
byte result = (byte)(a + b);

If we mix two different types in an arithmetic operation, then Java converts the result to the highest of them.
This multiplication gets a float number because one of the operands is float :

float a = 3.5f;
int b = 4;
float result = a * b;

In some situations, we may read numeric values from textual sources, such as text file, or user input. In this
case, we need to convert the text into the corresponding numeric value. To do this, Java provides some
useful instructions. Here you can see the most useful ones:

Integer.parseInt converts a text value into int :

3.2. Converting from / to string

Java programming language

Page 6 of 6

int value = Integer.parseInt("23");

Float.parseFloat , Double.parseDouble , Byte.parseByte , Short.parseShort and
Long.parseLong do the same with their corresponding data types:

float value = Float.parseFloat("3.1416");

If we want to convert a numeric value into a string, we can choose one of these solutions:

Concatenate the numeric value with an empty string "" :

int number = 23;
String text = "" + number;

Use String.valueOf instruction to convert the specified value to string:

int number = 23;
String text = String.valueOf(number);

Exercise 1:

Create a program called Ages.java that:

Defines two byte variables to store your age and the age of a friend
Defines another byte variable to store the addition of both ages (you may need to typecast the
result)
Defines a float variable to store the average of these ages, including fraction digits
Prints the message "The age average is " followed by the average calculated in previous step

