
Development Environments

Page 1 of 9

Unit tests are an essential part of software testing, in which we must check if every unit of our application
(class or set of functions) works as expected. In order to check this, we need to plan a strategy to define the
set ot test cases as complete as possible.

There are three approaches to design these unit test cases:

Structural approach or white box, in which we focus on the inner working of the units that we are
testing.
Functional approach or black box, in which we focus on the interface of the units that we are testing,
this is, their inputs and outputs, but not in their inner behavior.
Random approach, which consists in using statistical models to generate the possible input for the
program. This way, we generate the test cases.

White box tests focus on the inner working of a program. This is the first tests that we must apply to a system,
so that we can find basic shortcomings that are not related with user interface.

There are several types of white box tests, as we are going to see right now. We can apply one or many of the
following approaches in order to complete these type of tests.

Software testing

Unit test design

1. White box tests

1.1. Basic path tests

file:///d%3A/Trabajo/Apuntes/entornos/md/en/slides/06b.html
file:///d%3A/Trabajo/Apuntes/entornos/md/en/06b.pdf

Development Environments

Page 2 of 9

This method was focused on determining the complexity of a piece of code, so that we use this complexity to
establish how many execution paths can be achieved.

It relies on a principle that sets that every procedural design can be represented as a flow graph. The
cyclomatic complexity of this graph determines the number of independent paths. Each one of these paths
corresponds to a new set of sentences or a new condition. Let's have a look a this short piece of code and the
possible paths that can be run with it:

If we want to properly test this piece of code, we need to test the following paths:

1,2,3,F
1,4,5,F
1,2,4,5,F
1,2,4,F

Which correspond to the following tests:

a=true, b=true, c=true
a=false, b=*,c=true
a=true, b=false, c=true
a=true, b=false, c=false

So we should define 4 test cases, each one corresponding to an item of previous list, with the appropriate
values for the input params a, b and c.

Exercise 1:

Design the white box test set for the following piece of code, using the Basic path test approach
explained above. Determine the corresponding paths to be tested, and the test cases to test each path.

Development Environments

Page 3 of 9

if (num1 > 10)
{
 if (num2 > 10)
 System.out.println("Both are greater");
 else
 System.out.println("First is greater");
} else {
 if (num2 > 10)
 System.out.println("Second is greater");
 else
 System.out.println("None is greater");
}

This method is similar to the previous one: it evaluates every possible path of the code, but it only focuses on
the conditions of the code. Let's have a look at this example:

public boolean isLeapYear(int year)
{
 boolean result = false;
 if(year % 4 == 0)
 {
 result = true;

 if(year % 100 == 0)
 {
 result = false;

 if(year % 400 == 0)
 {
 result=true;
 }
 }
 }
 return result;
}

Conditions:

if(year % 4 == 0) : C1
if(year % 100 == 0) : C2
if(year % 400 == 0) : C3

From this set of conditions, we need to build the truth tables to check every possible combination:

1.2. Condition tests

Development Environments

Page 4 of 9

N C1 C2 C3 Result

1 true true true true

2 true true false false

3 true false true true

4 true false false true

5 false true true false

6 false true false false

7 false false true false

8 false false false false

As we can see, cases 3 and 4 lead to the same result regardless of the value of C3. And the same thing
happens with cases 5 to 8 (condition C1 determines the final result regardless of the other two conditions). So
the tests needed for this function are:

N C1 C2 C3 Result

1 true true true true

2 true true false false

3 true false true true

4 false true true false

Again, we need to design 4 test cases associated to the 4 rows of previous table.

Exercise 2:

Repeat previous exercise using now the Condition tests approach.

This test evaluates the possible paths for loops. For every loop with n iterations, we must check if:

The loop is never iterated
The loop is iterated only once
The loop is iterated twice
The loop is iterated m times, being m < n
The loop performs n and n-1 iterations.

If we have any nested loop, we must start exploring the inner loops and then go to the outer ones.

1.3. Loop tests

Development Environments

Page 5 of 9

For instance, let's have a look at the following code that checks if a given number (previously entered by the
user) is primer or not:

boolean result = true;
if (number == 0 || number == 1)
 result = false;
int i = 2;
while (i <= number / 2 && result)
{
 if (number % i == 0)
 result = false;
 else
 i++;
}

The loop is expected to run up to N = number / 2 - 1 times as much. From the loop test approach, we must
design test cases in which:

Loop is never iterated. For instance, if number is 2, it is automatically prime, no iteration is performed

We could also test the case of 0 and 1, that are covered with the first if clause

Loop is iterated once. This can be achieved with number = 3
Loop is iterated twice. For instance, with number = 9
Loop is iterated m times < N. For instance, for number = 25 the loop is iterated 4 times.
Loop is iterated N times and/or N-1 times. In order to reach N times, we just need a primer number, such
as 23. In order to iterate N-1 times, we need a non-prime number that is not found out until the last
iteration. In this case, we could use number = 4, although it's a quite simple test case.

So we could build this table for the test cases:

ID Name Data Expected result Actual result

U0 BasicCases 1 false

U1 NoIterations 2 true

U2 OneIteration 3 true

U3 TwoIterations 9 false

U4 MIterations 25 false

U5 N-1Iterations 4 false

U6 NIterations 23 true

Exercise 3:

Development Environments

Page 6 of 9

The following piece of code checks if a number has its digits in ascending order:

boolean result = true;
while (number >= 10 && result)
{
 int lastDigit = number % 10;
 number /= 10;
 int newLastDigit = number % 10;
 if (lastDigit < newLastDigit)
 result = false;
}

You are asked to design a test case table for every possible loop iteration, according to previous
example.

These tests focus on the input and output of the application or module to be tested, and we don't need to
pay attention to the inner code of this module. There are also some different techniques that we can apply to
these tests.

It consists in dividing the possible inputs of the application in groups called equivalence classes. Some input
values will be valid inputs and some other will be not valid, so we must design test cases to check both valid
and invalid equivalence classes.

For instance, if we have a method to determine the total amount of a sale, given the concept (string starting
with letter), product amount (integer other than 0) and product price (double greater or equal than zero), the
possible equivalence classes are:

Input condition Valid class Invalid class

Concept not empty
starting with letter

string=letter+*
empty string OR string starting with number OR string
starting with special character

Amount integer other
than 0

amount other
than 0

amount 0 OR not integer

Price double greater or
equal than 0

price>=0 price<0 OR not numeric

Once we define the equivalence classes, we can design the test cases:

2. Black box tests

2.1. Equivalent partition

Development Environments

Page 7 of 9

ID Name Preconditions Steps Data
Expected
result

Actual
result

U1 Valid
SalesList
object exists

Enter valid
classes for
concept,
amount and
price

concept="screw",
amount=2,price=2

0, a new
element
is added

U2 NotValidConcept1
SalesList
object exists

Enter empty
string as
concept

concept="",
amount=2, price=2

-1, no
element
added

U3 NotValidConcept2
SalesList
object exists

Enter string
starting with
number

concept="2screw",
cantidad=2,
precio=2

-1, no
element
added

U4 NotValidConcept3
SalesList
object exists

Enter string
starting with
special char

concept="@screw",
amount=2, price=2

-1, no
element
added

U5 ValidAmount
SalesList
object exists

Enter
negative
amount

concept="screw",
amount=-2,
price=2

0, a new
element
is added

U6 NotValidAmount
SalesList
object exists

Enter amount
of 0

concept="screw",
amount=0, price=2

-1, no
element
added

...

Exercise 4:

You have been asked to implement the tests for a class called SalesList, whose attribute is a
HashMap<String,Double> . The string is the product description, and the number is the total amount

of sales over this product. The class has the following methods:

addSale(String concept, int amount, double price) : it adds a new element to the
HashMap with the specified concept as product description. The incomes will be calculated by
multiplying the amount and the price. It will return 0 if everything is OK, and -1 if there is any error.
We will not be able to add sales with amount = 0 or price < 0, but we can add sales with negative
amounts (but not negative prices).
getTotal() : it will return the total sum of the incomes of the HashMap.
getAverage() : it will return the income average.

Design the possible test cases for every method of the class. Regarding addSale method, you just
have to complete the table shown in previous example. For getTotal and getAverage methods,
you just need to set the preconditions to get the desired result, since they have no parameters.

Development Environments

Page 8 of 9

In order to design the test cases, we take into account input and ouput conditions:

If the input condition is a range, we must design test cases for the limits of this range.
If the input condition is a finite and consecutive set of values, we must define the test cases for the
minimum and maximum value, along with the minimum + 1 and maximum - 1 values.
We must apply these same rules for the output conditions.

For instance, let's suppose that we are testing a function that checks the average of a list of marks that must
contain between 3 and 9 marks. In this case, we should define these test cases to check the input values:

Lists of 2, 3 and 4 marks
Regarding the case of 2 marks, it should produce an error

Lists of 8, 9 and 10 marks
Again, regarding the case of 10 marks, it should also produce an error

Regarding the output values, the average must be between 0 and 10, so we should also define cases for:

Final averages of -1, 0 and 1
Final averages of 9, 10 and 11

Depending on the internal code of the function to be tested, sometimes some of these cases are impossible
to reach. For instance, if we make sure that marks are all values between 0 and 10, we will never get an
average < 0 or > 10.

A possible test case table for this example could be this one:

2.2. Analysis of limit values

Development Environments

Page 9 of 9

ID Name Data Expected result Actual result

TC1 2Marks [2, 6] Error

TC2 3Marks [4, 5, 6] 5

TC3 4Marks [7, 7, 9, 9] 8

TC4 8Marks [1, 2, 3, 4, 6, 7, 8, 9] 5

TC5 9Marks [2, 3, 4, 5, 6, 7, 8, 9, 10] 6

TC6 10Marks [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] Error

TC7 Average-1 [-2, -1, -1] Error

TC8 Average0 [0, 0, 0] 0

TC9 Average1 [0, 1, 2] 1

TC10 Average9 [8, 9, 10] 9

TC11 Average10 [10, 10, 10, 10] 10

TC12 Average11 [10, 11, 12] Error

Exercise 5:

Let's test a function that gets as input the day of a month (integer between 1 and 31) and a month
number (integer between 1 and 12) and returns how many days are left in this month (an integer
between 1 and 30, depending on the month).

int getDaysLeft(int dayOfMonth, int monthNumber) { ... }

Think of the possible test cases to cover all the limit values.

