
Development Environments

Page 1 of 4

   

As we saw in earlier sections of this course, one of the stages in the software development process is testing.
An it's a really important stage. In this video you can see how important is to set up an appropriate and
efficient test stage.

Software tests consist in the dynamic verification of the behavior of a program, with a properly selected set of
test cases. Tests are performed in order to find possible bugs in the implementation, quality or usability of a
given software.

The main targets of software testing are:

Detect software failures or bugs, and make sure that every previously detected bug has been fixed.
Verify the appropriate integration of the components.
Verify that every requirement has been implemented.

In order to reach these targets, software testing must follow a set of principles:

Test can help us find bugs, but not their absence.
The most difficult part of the testing process is to decide when to stop.
Try to avoid test cases that are not previously planned, not reusable and/or trivial, unless the program is
really easy to test.
Test cases must be written for both valid and not valid or unexpected input.
The number of bugs to be found is directly proportional to the number of bugs already found. In other
words, the more bugs we have detected with our test cases, the more bugs are waiting for us.

The stages of every testing process are:

1. Select what the test must detect, its main target.
2. Decide which kind of test is going to be performed and what kind of elements do we need to do it.
3. Implement the test cases. A test case is a set of data or input conditions that will be used in order to

reveal something about the program, or the attribute(s) that we are checking.
4. Determine the expected results of the test cases and create a document with all of them.
5. Run the test cases

Software testing

Introduction to software testing

1. Targets and principles of software testing

2. Stages of software testing

2.1. Evaluating the results

file:///d%3A/Trabajo/Apuntes/entornos/md/en/slides/06a.html
file:///d%3A/Trabajo/Apuntes/entornos/md/en/06a.pdf
https://www.youtube.com/watch?v=TDynSmrzpXw&list=PLDC2A0C8D2EC934C7


Development Environments

Page 2 of 4

Evaluating the results consists in comparing the actual test results with the expected results. Every difference
between them means that there is a bug, and this bug is usually due to the unit or attribute that we are
testing, although sometimes it can be due to the test process itself, if it hasn't been properly run.

There are different types of tests. Let's see them from lower to higher level.

Unit tests check the appropriate behavior of one code unit. A code unit is typically a class in object oriented
languages (Java, C#...), or a set of functions closely related in non object-oriented languages (Python,
JavaScript...). They are usually run by the development team, and they must be:

Automatable
Complete
Repeatable
Independent (a unit test must not affect the result of another one)

They try to find bugs in the interface connections and/or in the interaction between different components or
units of an application. In other words, once the unit tests are successful, we try to join all (or some of) these
units and see how the program works. They are performed by the development team by applying some of
these techniques:

Big bang: it consists in integrating and testing everything at once (not recommended, unless the project
is too simple)
Top down: components are tested according to their hierarchy, from top to down. This way, bottom
components that are not implemented or tested yet are replaced by auxiliary components that simulate
their behavior. So, interfaces between components are checked in early stages of the project.
Bottom up: bottom componentes are firstly implemented and tested, so we don't need any auxiliary
component to replace them. As they are tested, then upper components can be integrated and tested as
well.
Combined: some parts are tested using a top down technique, and some others use a bottom up.

In this category we can also talk about regression tests. They consist in testing a given component whenever
it has been modified, in order to find out any fault that was not previously checked. These faults can be found
in either the modified code or in any other component integrated or related with the one that has been
modified.

CI/CD

CI/CD stands for Continuous Integration / Continuous Deployment. It goes one step further after continuous
integration and, if all the tests have been passed, then the application is automatically deployed on its target
environment. Actually, we can distinguish between:

3. Test types

3.1. Unit tests

3.2. Integration tests



Development Environments

Page 3 of 4

Continuous Integration / Continuous Delivery if the deployment process after the CI is manual
Continuous Integration / Continuous Deployment if this deployment process is automatic after the CI
stage

We are not going to delve into these aspects here, since they depend on the project architecture itself. CI/CD
can be completely different depending on the operating system, IDE and language that we are using, so there
are no commong guidelines that we can learn in this stage.

After the unit and integration stages, we can still differentiate two additional types of tests:

Acceptance or validation tests: these tests are performed by customers and project managers in order
to check that every requirement registered in the analysis stage is being satisfied.
System tests: they must prove that the deployment of the application in its real environment is
successful, and its behavior is as expected. In this test, the customer is also involved, along with the
project manager or the development team.

When we want to do any test over an application, we need to design the test cases. As we have said before,
they are a set of conditions that can determine if software runs properly or not. The concrete definition
according to the ISTQB (International Software Testing Qualifications Board) is: "a set of input values, execution
preconditions, expected results and execution postconditions, developed for a particular objective or test
condition, such as to exercise a particular program path or to verify compliance with a specific requirement".

There are several formats for these test cases, but we must include the following data anyway:

Identifier: it can be numeric or alphanumeric, and it help us identify each test case
Name: a descriptive (meaningful) name.
Preconditions: what needs to be ready before starting the test, such as a given input file, the results of
other test cases previously run...
Steps: it defines the interaction with the user, such as entering a name, or pressing a button.
Test data: data to be used in the test case, such as a concrete user name, password...
Expected result: what the test must produce or output
Actual result: result that we actually get when we run the test. This last field is filled when we run the
test, whereas the rest of fields must be specified before running the test.

Example:

We want to check the behavior of a given form to log in an application. These are some of the test cases that
we could specify:

3.3. Upper level tests

4. Test cases



Development Environments

Page 4 of 4

ID Name Preconditions Steps Data
Expected
result

Actual
result

U1 ValidInput1
User pepe exists with
password 1234

Type user
and
password

pepe
1234

OK

U2 UserNotValid User pepito does not exist
Type user
and
password

pepito
1234

error

U3 PasswordNotValid
User pepe exists with
password different than
4567

Type user
and
password

pepe
4567

error

...

Exercise 1:

Design test cases to check the behavior of a function that returns a boolean indicating if the number
specified as a parameter is even or not.


