
Development Environments

Page 1 of 9

As we have seen before, Git is a distributed version control system (DVCS) created by the Linux team. It is
currently used by many version control servers, such as GitHub, BitBucket or GitLab, to store projects
remotely. But, if we want to interact with these remote projects or repositories from our local machine, we
need to install Git locally, and make use of the different commands provided by Git. In this document we'll
learn how to install Git, and how to use some of the basic commands provided.

Git installation depends on the operating system in which we want to install it.

For Linux systems, we just need to run the specified command to install Git. For instance, in Ubuntu
systems we need to run this command:

sudo apt-get install git

For Windows and Mac, we need to go to Git web site and download the appropriate version. Regarding
Mac, you can also install Git by installing XCode.

Before using Git commands, we should set up some default variables in our system, so that we can easily
connect to server and store our credentials for later connections. We are going to use git config
command to store these variables, and we can store them in three different levels:

System: using --system parameter, the configuration applies to every user in our system.
User: using --global parameter, the configuration applies only to current user in the system. This is
the option that we are going to use in this section.
Repository: each repository would store its own Git configuration parameters.

First of all, let's define our full name through this command (replace John Doe with your real name):

git config --global user.name "John Doe"

Next, we specify the e-mail with which we created our GitHub account:

Version control tools

Using Git commands

1. Git installation and setup

1.1. Git setup

file:///d%3A/Trabajo/Apuntes/entornos/md/en/slides/05c.html
file:///d%3A/Trabajo/Apuntes/entornos/md/en/05c.pdf
https://git-scm.com/downloads

Development Environments

Page 2 of 9

git config --global user.email yourEmail@server.com

Then, we can specify Git default editor. This step is not necessary, but if Git needs to open a text file to show
some information, this will be the editor that we will use. For instance, we can use Notepad in Windows this
way:

git config --global core.editor notepad

Finally, we need to specify the way Git is going to store our credentials, so that we don't need to type them
every time we need to connect to the repositories. The helper that we use in order to store our credentials
depends on the operating system in which we are using Git, but the general command is like this:

git config --global credential.helper <helper>

where <helper> depends on the operating system:

For Windows we use wincred
For Linux we use cache
For Mac OSX we use osxkeychain

So if we want to set up the credentials helper in Windows, for instance, we type something like this:

git config --global credential.helper wincred

This way, we are ready to go using Git, even from different IDEs, as we will see in other sections. We can check
current configuration using git config --list command. Also, we can check the version that we have
installed currently with the command git version .

Let's have a look now at some commands that we can use to deal with local projects (without connecting to
any remote repository or server). These commands are useful either for local projects and for remote projects
that we have previously downloaded, if we want to work locally with them for a while.

If we want to initialize or create a new local repository, first we need to create the folder in which this project
is going to be stored. Then, we can initialize it as a Git repository with this command (from inside project
folder):

2. Basic useful local commands

2.1. Create a local repository

Development Environments

Page 3 of 9

git init

This will initialize this folder as a Git folder, by creating a hidden subfolder called .git , where the repository
database will be stored. We don't need to care about this subfolder.

Every file inside this repository will be in one of the three states mentioned in previous sections (commited,
staged or modified), and we can change the state of every file by typing some of the commands that we will
see now. We can also check the status of the repository at any time with the command git status (we
must run it from the root folder of the repository). It will let us know if everything is committed, or if there is
any file with unsaved changes.

Exercise 1:

Create a folder called GitExercises in your system. We are going to store some repositories on it. To
begin with, create inside this folder a new subfolder called MyFirstLocalRepo, get inside this folder and
run the command git init to initialize this folder as a Git repository.

If we add any new file to the repository folder (for instance, a file called file.txt) and run git status
command, Git will show that there are some files that must be added to the repository.

These files are in modified state. If we use git add command, the file(s) will be marked as staged. If we just
want to add a single file, we specify this new file as a parameter:

git add file.txt

However, there can be many changes in our repository. If we want to add them all at once, we use . as
parameter:

git add .

2.2. Add or edit files in the repository

Development Environments

Page 4 of 9

After every new change that we make in the repository (either adding, editing or removing files), we need to
repeat this command to stage the changes. Once the changes have been added, this is the result of
git status command:

As you can see in the image above, we can use git rm command to unstage this file if we want to:

git rm --cached file.txt

After adding or staging the changes we need to do one final step in order to update our repository database.
This operation is commit, and we can do it through git commit command. We can run it after one or many
git add operations that have added one or more files to the staging area.

This is the general structure of git commit command:

git commit -m "My first commit"

Parameter -m lets us specify a commit message. This message is compulsory in order to save the commit,
so that, if we want to retrieve it later, we can identify this message in the commit list. After committing
changes, if we run git status we should see that there's nothing to commit:

On branch master
nothing to commit, working tree clean

Alternatively, we can also use -a parameter to automatically add or stage changes before committing. This
command joins a git add . and a git commit command:

git commit -a -m "Your commit message"

Showing commit history

2.3. Saving or committing changes

Development Environments

Page 5 of 9

If we want to see the commit history of our repository, we can type this command:

git log

Note that every commit has a label which consists in a large sequence of digits and letters. In previous
example, our commit has been labeled as 08f4ed1751.... This label will be useful in order to check the commit
later, although we don't need to remember all these characters, just the starting prefix.

Showing changes

We can also see the changes between two consecutive versions of the repository. There are many ways of
doing this:

git show : this shows the changes made in the last commit
git show cb1fd6f8 : this shows the changes made in the comit labeled with label starting with

cb1fd6f8 (as you can see, we don't need to type the whole label).
git diff : this shows the changes made in the last version that has not been committed yet.

Exercise 2:

Make these changes in the repository MyFirstLocalRepo that you have created in previous exercise:

Create a new file called file.txt with the text "My first text file". Save changes in this file
Run git add . command to stage this file
Run git commit command with the message "My first commit" to save the changes in the
database
Edit file.txt and add a second line with your name
Run git commit -a -m to automatically stage the changes and commit them, with the message
"My second commit".
Run git log command to see the commit history. You should see something like this:

Development Environments

Page 6 of 9

Run git show command to see the changes made in last commit. You should see something like
this:

New changes are shown in green if they are added (in this case, your name at the end of the file
contents), or in red it they have been removed.

Labeling commits

We can manually add labels to a given commit, so that we can easily find it later when we want to show its
changes. We use git tag command, followed by the tag name:

git tag v1.0

This applies to the last commit sent. Then, we can show the changes of this commit with this command:

git show v1.0

If we want to tag a commit that is not the last one, then we must specify the previous label of this commit (or
its initial prefix), after the new label that we want to assign to it:

Development Environments

Page 7 of 9

git tag v1.0 cb1fd6f8

What if we want to go back to a previous commit and undo the changes made in last commit(s)? We can use
git reset command. This command can be used in many ways, but here we will explain one of them: we

need to identify the label of the commit that we want to set as our current one, and then type this command:

git reset --hard 0305afd

where 0305afd is the prefix of the label for the commit we want to set as our current, active status.

In every Git repository, we can manually add a file called .gitignore . It's just a text file containing a list of
files and folders that must be ignored when uploading new changes. For instance, if we are working in a C#
project, we don't need to upload exe files to the repository, since we can just recompile the project again. So
we can edit this file and specify this:

*.exe

This will skip every .exe file in the main folder of the project. In the same way, we can add as many files and
folders as we need in this file. For instance:

node_modules/
*.exe
*.tmp

This skips node_modules folder and every .exe or .tmp file in the root folder. Here you can find typical
.gitignore files ready for many different project types, such as Node projects, Laravel projects and so on.

NOTE: .gitignore file does NOT exclude files that have been already commited previously. For
instance, if we tell this file to ignore .exe files but we have previously commited an .exe file to the
repository, this file will not be removed from it.

Now that we have learned how to add and edit content in a local repository, let's see how to connect to a
remote GitHub repository to download/upload the changes. First of all, if we want to work with remote

2.4. Undoing changes

2.5. The .gitignore file

3. Working with remote repositories

https://github.com/github/gitignore

Development Environments

Page 8 of 9

repositories stored in GitHub, we need to create this remote repository there.

Once we have our repository created in GitHub, we need to copy it into our local machine. This operation is
commonly called a clone operation, and we do it through git clone command, specifying the URL of the
repository, which can be retrieved from the Clone or download button in the repository itself.

For instance, this could be the appropriate command to clone the repository in the image above:

git clone https://github.com/nachoiborraIES/test

This command will create a folder called test in the directory from which we are running this command, so
make sure you are running it inside the folder you want to place your project in.

Now that we have our repository cloned locally, whenever we work in a team, or if we are managing the same
repository from different computers, we may need to download the latest changes of this repository to our
local copy. This step is essential in order to update our contents before making new changes.

To do this, we can just use git pull command from the repository folder:

git pull

3.1. Cloning repositories

3.2. Updating remote changes in local

Development Environments

Page 9 of 9

This automatically downloads the latest changes and updates the affected files.

If we have our local repository up to date and make new changes to any file, we can upload these changes to
the remote repository. The required steps are:

1. Make changes to the desired file(s)
2. Tag them as staged through the git add . command that we have seen before
3. Commit your changes locally through the git commit command that we have also seen before
4. Upload this commit (or last commits, if there's more than one) with git push command.

Exercise 3:

Clone the GitHub repository MyFirstRepo that you should have created in previous document. Clone it
inside the same main folder in which you are creating the rest of local repositories in this document, so
you will see a new folder called MyFirstRepo containing all the elements of your remote repository. Then,
apply these changes:

1. Add a new file called shopping_list.txt with a list of items that you want to buy.
2. Upload this file to the remote repository (remember, first add the changes, then commit them and

finally push them)
3. Go to GitHub and check that the new file has been uploaded successfully
4. Go to another different folder of your computer and clone a new copy of the same repository.
5. From this second folder, add a new file called to_do.txt and add some tasks that you have pending

for these next weeks.
6. Upload the changes to the remote repository
7. Go back to your original MyFirstRepo folder and do a git pull command. Check if the new file

to_do.txt has been downloaded to this local copy.

3.3. Updating local changes in remote

