
Development Environments

Page 1 of 5

   

Version control systems (VCS) are tools that can register any change in any file or set of files over time, so that
we can easily recover any older version. They can be used not only with source files, but also with any other
file type.

A VCS lets us revert the state of any file or even of a whole project, and compare files over time, determine
who changed the file at a given timestamp and much more. Besides, if any file gets damaged or lost, we can
just go back to a previous version in history and recover it again.

VCS can be used either online or in local mode. This last mode is particularly useful because we can easily
create a backup of a project and store it locally, so that we can restore it later if we need to (in case of an
error, for instance) and go back to a stable version.

The main advantage of this is its simplicity, and the main drawback is that we must manage the version
control manually, so we may make some mistakes in this process. For instance, we must forget that we are in
the wrong folder, and then modify the backup file instead of the current one.

In order to face these problems, there are some interesting tools that help us manage the files and changes.
One of the most popular ones is a system called rcs, which can still be found in many computers. This tool
basically stores a set of patches or differences between files from one version to the next one. These changes
are stored in a special file type, and then the system can recover any previous state of any file, by adding or
substracting the corresponding patches.

Version control tools

Introduction to VCS

1. Version control systems

1.1. VCS types: Local VCS

file:///d%3A/Trabajo/Apuntes/entornos/md/en/slides/05a.html
file:///d%3A/Trabajo/Apuntes/entornos/md/en/05a.pdf


Development Environments

Page 2 of 5

Local VCS are not suitable when we need to collaborate with other team members. To solve this problem,
there are also centralized VCS (CVCS). These systems are installed in a single server that contains all the files
and their different versions. Then, many clients can connect to this server and download/upload changes to
these files. This second way of controlling versions was a standard for many years, since it had a great
advantages over the local CVS systems, but its main drawback is that, if server fails, we could lose the whole
project.

1.2. VCS types: Centralized VCS

1.3. VCS types: Distributed VCS



Development Environments

Page 3 of 5

Distributed VCS (DVCS) emerged to solve the main drawback of CVCS. In a DVCS (such as Git, Mercurial,
Bazaar or Darcs), clients not only connect to the server, but also download the whole repository. So, if a server
fails, any of the local repositories of the clients can be copied to the server again, and the project can be
restored. Everytime we download anything from the repository, we are in fact making a complete backup of
the data.

Git was developed by the Linux team once they broke up the relationship with BitKeeper, the tool that they
used for version control before. From the lacks seen in this tool, they decided some of the main targets of the
new system to be developed:

Speed
Easy design
Strong support to non-lineal development (thousands of parallel branches)
Completely distributed
Suitable for big projects (such as Linux core)
Efficiency (in terms of speed and data size)

From its birth in 2005, Git has evolved and it has become more and more easy to use. It is really fast and
efficient with big projects, and has an outstanding branching system.

2. Git

2.1. Git foundamentals



Development Environments

Page 4 of 5

Let's see some of the basic concepts regarding Git version control system.

Data modeling

Git stores some kind of snapshot set of its file system, instead of storing a list of changes. Everytime we
upload a new change, it basically takes a photo of every file at that moment, and stores a reference to this
snapshot. If the file has not been modified, then Git does not save a copy of it, just a link to previous, identical
version.

This is an important difference between Git and almost every other VCS, and it makes Git reconsider these
aspects from previous generations of VCS. So it looks more like a small file system with some useful tools,
rather than a VCS.

Local work

Most of Git functions just need local files and resources to work. As the project history is stored locally, many
operations are immediate, and it lets us work in a project even if we are not connected to the Internet.
Changes are stored locally and, as soon as we have a connection, the external repository can be updated.

Integrity

Git uses hash SHA-1 algorithm to store the information, so data is always verified and, in case it is changed,
Git would notice.

It only adds information

Every Git operation consists in adding some information, so everything can be easily undone (information is
not erased). After confirming a snapshot, information is stored safely.

Project states

Git has three main states in which every file of a project can be:

Modified: data has been changed locally, but it has not been committed yet.
Staged: data has been tagged to be sent in next commit.
Committed: data is safely stored in a local storage



Development Environments

Page 5 of 5

Therefore, there are three sections in Git:

Git directory: where Git stores the metadata and the database of the elements of the project. This part is
what we copy when we clone the repository from other computer.
Working directory: it is a copy of a project version. These files are extracted from the Git database and
placed in a folder, ready to be used.
Staging area: it is a simple file stored in Git directory that contains information about the files that will
be sent in next commit. It is also called index.


