Development Environments

Software methodologies

Software lifecycles

&6 B

1. Software engineering

In order to develop software properly, we must follow some steps, or a given approach for this development.
Software engineering is the branch of computer science that helps us follow these approaches and steps
correctly.

1.1. Stages in software development
In (almost) every software engineering process, we can follow these steps:

1. Requirements analysis: this stage includes the communication with the customer to clarify his needs,
and an analysis stage to sketch out the main behaviour of the application. It can be divided into two
stages:

© Requirements specification: the communication with the customer, in which we will arrange some
interviews or other ways of getting information. We must clarify the needs to be fulfilled, and once
the requirements have been gathered, we write a document called requirements specification, that
must be as complete as possible.

o Analysis: from the requirements specification created in previous stage, we must now create a new
document where we will use some helpful diagrams to represent the main functionalities of the
application and their connections or dependencies.

2. Design: from the analysis documents set before, we can now determine how the software will work. Here
we will use other diagrams that will help us implement the software.

3. Implementation: this stage should be started from previous design stage, using a specific programming
language (or more than one).

4. Testing: once the product has been implemented, we must test it to check if it fulfills all the requirements
and there is no bug. These tests should be checked by someone not involved in the implementation
process.

5. Maintenance: this last stage consists in improving the performance of the software product, by adding

new extensions, or fixing some bugs

To sum up these stages, we could say that software engineering provides an approach that helps us
understand the problem to be solved (requirement analysis), design a possible solution, implement it, test it
and then get a better quality or performance (maintenance).

Page 1 of 6

file:///d%3A/Trabajo/ApuntesGitHub/entornos/md/en/slides/03a.html
file:///d%3A/Trabajo/ApuntesGitHub/entornos/md/en/03a.pdf

Development Environments

However, all these steps may sometimes be an obstacle, since many developers think that software
engineering is something too structured, that do not let them develop software quickly. But we must see
sofware engineering as something adaptive, that provides different models and methodologies to be adapted
to our development process, as we will see later.

2. Software lifecycles

A lifecycle is a list of stages through which a system (in this case, a software project) must go, from its birth
until it is no longer used. In each lifecycle we set both the stages and the requirements to go from one stage
to the next, including the inputs and outputs expected for every stage.

The products generated after each stage are called deliverables and they are either part of the input of the
next stage or an evaluation of the project at a given point.

Some lifecycles are repetitive, this is, we can go through the same stage more than once, depending on the
state of the product. This process is also known as feedback.

We are going to see some of the most typical lifecycles in software development, and their pros and cons. In
all of them we will find the stages seen before (requirements analysis, design, implementation...), or any
variation of them.

2.1. Cascade or waterfall model

This is the oldest model, and the most widespread. It was created by W. Royce in the 70s, and it sorts the
stages of software development rigurously, so that the beginning of a stage must wait for the end of the
previous one.

[REQUIREMENTS 1

DESIGN 1

IMPLEMENTATION 1

TESTS
w

MAINTENANCE

It is called cascade model because the stages are placed one below the other, and the process flows from the
upper stages to the lower ones, as if they were a cascade.

Pros:

e Suitable for small and well known projects, where all the requirements are perfectly set at the beginning

Page 2 of 6

Development Environments

* Well structured, stages do not mix up
* FEasy to use, because of its rigidity

Cons:

* We can't apply it to most of real life projects, since requirements are barely known at the beginning.

* We can't see any result until the end of the process, so customers must feel worried about that final
result.

® It is not usual to have a stage perfectly finished before starting the next one.

* Failures are not detected until the test stage, at the end of the process.

Variations:

There are some variations of this model, like the Sashimi model, in which stages are overlapped, like
Japanese fish does. In this model, there is some time overlap between two sequential stages; this way, we start
the design stage while we finish setting the requirements (and we can change them as we go forward with the
design), and we start implementing the system while we finish with the design (so that we can improve the
design because of some issues detected during the implementation).

2.2. V model

One of the main problems of the traditional cascade model is that failures are not detected until we reach the
final stages of the process. With the V model, tests start as soon as possible, and they are performed in
parallel by another work team. This way, tests are integrated in each stage of the lifecycle.

TEST
REQUIREM.
Da—
[DESIGN] -« TEST
|SOFTWARE|
lIMPLEMENTATIONI

Left branch of the V represents the requirement analysis, design and implementation, and the right branch

integrates the tests of each stage. We move along the left branch until we reach the bottom, and then we
validate the tests of the right branch, from the most specific ones (unit tests to check some concrete modules
of the product) to the most generic ones (integration and system tests). Every time we detect a problem, we
go back to the associated stage of the left branch.

Pros:

Page 3 of 6

Development Environments

® Easyto use

* There are some deliverables for each stage

* Higher probability of success, due to the tests plans associated to each stage of the process
* Useful for small projects with requirements that are easy to understand

Cons:

* Itis also rigid
® User does not see any result until later stages, because we don't develop any intermediate prototype
* Sometimes it is hard to go from the right branch to the left branch to fix the problems

2.3. Iterative model

The models seen so far are only suitable for projects with easy, well specified requirements, but this is not very
usual in real software projects. In order to try to improve this, the iterative model repeats the cascade model,
and generates an intermediate version or prototype after each iteration. This prototype can be then checked
by the customer, problems can be detected earlier and then we can improve the system.

= N A= A
IMPL.
_)\ J/
=)

—J

Pros:

* We don't need to specify all the requirements at the beginning
* Risks are better managed, because we deliver intermediate prototypes after each iteration

Cons:

e If we don't need to have all the requirements at the beginning, they may appear later unexpectedly, and
they may affect the design or system architecture significantly.

Variations:

There are some interesting variations of this model, with other names and some particular features:

Page 4 of 6

Development Environments

* Incremental model: each prototype only has some few improvements from previous one. This make the
prototypes easier to test (we only have to test these small changes). However, we must have a lot of
experience in order build these prototypes proportionally.

* Prototype-based model: it is based on developing prototypes of the application. At the beginning, we
just gather some requirements quickly, make a simple design and have a basic prototype, so that
customer can quickly check the application and give us his feedback. The main advantage of this model
is that customer is involved in the process from the very beginning. But it may be very costly, since we
may develop many useless prototypes. Besides, customer must feel disappointed if he checks some
versions of the product that do not work as he expected, and the developer may be tempted to speed up
the process to include everything the customer wants, eluding all the quality and maintenance patterns.

2.4. Spiral model

This model was created by Boehm in 1988, and it tries to combine the cascade and iterative models. Stages
are arranged in a spiral divided into four sections, so that each section does one task, and each spiral turn
goes through all sections and tasks, generating one prototype after each complete turn.

This model manages the risks of software development. We start from the middle of the spiral, and in every
loop we analyze all the development alternatives, we identify the most assumable risks and then perform a
spiral cycle. If the customer brings new requirements or improvements, we then evaluate the risks again and
perform another cycle, until the product is finally accepted.

RISK
EVALUATION ., TARGETS
J. y f/"' "‘Hk\x.l "._IIII
I|'I II.I.-‘ P ..I |I
Il ' (.’ T
I| I'- \ S / i
ll".,\ I"‘\ T— /f"f E.-"
'l.\ JII."
\\\“‘x___*_ L ,x’f/
IMPLEMENT g
AND TEST PLANNING

* In the targets stage we set the final product to reach (requirements, analysis, etc.)

* In the risk evaluation stage we identify the possible risks of the project, and choose the options to
reduce them as much as possible.

* In the implement and test stage we design, implement and test the product, according to the options
chosen in previous stage.

Page 5 of 6

Development Environments

* In the planning stage we check the product with the customer, and then we decide if we need one more
spiral cycle to fix some problems or add some improvements.

Pros:

* Suitable for large and difficult projects

® Risks are minimized

* Implementation and maintenance are both integrated

* We develop prototypes from early stages, so that customer can provide his feedback along the process

Cons:

* We must have a lot of experience to evaluate the risks properly

* This model produces a lot of additional products (reports, prototypes...)
® |t can be very costly

* |tis not appropriate for small projects

Exercise 1:

Create a table like the one below (in a piece of paper, or in a text editor), and fill each cell with a YES or
NO, depending on whether the specified feature is part of the corresponding lifecycle.
Cascade V Iterative Spiral
It is simple and easy
It generates intermediate versions of the product
Suitable for projects with uncertain requirements

It lets us evaluate the risks of the chosen solution

Exercise 2:

Our team is going to develop an application to manage the accounting of a cinema company. The
customer still doesn't know what he expects from the application, and we want to use a really new
technology we don't control yet. According to this information, argue which lifecycle model(s) are the
most suitable for our purpose, and which one(s) are NOT recommended.

Exercise 3:

A teacher from the Higher Polytechnic School of the University of Alicante wants to develop a program
to help him correct his students' exercises. As he is very busy, he has asked a group of old students to
do it for him. We assume that, as he is a computer scientist, he knows perfectly what he wants from the
very beginning. It is a small project that should not take a lot of time. According to this information,
argue which lifecycle model(s) are the most suitable.

Page 6 of 6

