
Development Environments

Page 1 of 7

IntelliJ IDEA is a multi platform IDE developed by JetBrains. It was firstly released in 2001 as

IntelliJ, and it was one of the first IDEs with advanced browsing and code refactoring. We can

consider it a specific purpose IDE, since it focuses on a few group of programming languages.

It is available in two versions: Community Edition (free) and Ultimate Edition (commercial). The main

difference between them can be found in the languages and version control systems supported. For

instance, Community version does not allow PHP or Javascript. In our case, as we are going to work with

Java Virtual Machine, we need to download the Community edition, which is free and open source. This is

the download page.

Regarding the installation process:

In Windows, we have a step-by-step wizard that guides us through all the installation process. We can

choose the installation folder (or just leave the one set by default), and if we want to create a shortcut

in the desktop. We can also check an option to add a context menu to open IntelliJ project from the

explorer. This option can be very helpful.

Integrated Development Environments

Using IntelliJ IDEA

1. Installation and setup

file:///home/nacho/Documentos/entornos/md/en/slides/02d.html
file:///home/nacho/Documentos/entornos/md/en/02d.pdf
http://www.jetbrains.com/
http://www.jetbrains.com/idea/download/

Development Environments

Page 2 of 7

In Mac OSX, we have an installer that asks us to drag the application into the Applications folder.

In Linux, we download a tar.gz file that we must unzip. Inside the main folder there is a bin subfolder.

We must get into this folder from a terminal and run the command ./idea.sh to launch the IDE.

The first time we run it, it will create a shortcut somewhere in the applications menu, so we can launch

IntelliJ using this shortcut from then on.

The first time that we run IntelliJ, it lets us import previous settings, if we had any previous version

installed. If not, we can just choose "Do not import settings". Next, we can choose the UI theme...

Next, it lets us define a script to launch programs from command line, but we can skip this step and move

to the next one, in which we can choose to install some additional plugins. We can also leave this step with

Development Environments

Page 3 of 7

its default settings, and start using IntelliJ.

From the welcome screen, we can choose among:

Creating a new project

Open an existing project from our computer

Get a project from a remote repository using version control systems (VCS)

So, if we want to create a new project, we choose the option New Project, and then specify that we want to

create a Java project, from the left panel:

Next, we can choose a template for our project in order to generate some default code, but, as we don't

have any previous template, we can skip this step, and move to the next one, in which we must specify a

project name and location (we can leave the default location if we want to):

NOTE: by default, IntelliJ stores the projects inside a folder called IdeaProjects inside our home

folder. Each project is assigned a subfolder inside this main folder.

Then, we click on Finish and we will see our project. If we click on the project tab on the left, we can see the

project folder structure, and create elements (source files) on it.

2. Creating Java projects

Development Environments

Page 4 of 7

Now, let's create our first source file. Right click on the src folder and choose New > Java Class.

Then, we must specify the class name. For instance, Hello .

A new file will be created, and we can edit it in the main area. We can just leave a code like this one:

Development Environments

Page 5 of 7

We can run the file by right clicking on it and choosing "Run Hello.main()" option:

Then, we can check the results in the embedded terminal at the bottom of the window:

3. Keybindings

Development Environments

Page 6 of 7

In the following table you can see some of the most common keybindings or shortcuts available for IntelliJ

IDEA under Windows systems.

Shortcut Action

Ctrl + Shift + N Open new file.

Ctrl + N Open any class.

Ctrl + Spacebar Complete code.

Ctrl + Shift + Spacebar Smart code completion.

Ctrl + S Save file.

Ctrl + O Overwrite methods.

Ctrl + I Implement all.

Ctrl + / Comment / Uncomment line.

Ctrl + D Duplicate line.

Ctrl + Z Undo last action.

Ctrl + Shift + Z Redo last undone action.

Ctrl + F Show search dialog.

Ctrl + R Show replace dialog.

Ctrl + F9 Compile project.

Shift + F10 Run project.

Shift + F9 Debug.

F7 Step into function (in debug mode).

F8 Next line (in debug mode).

F9 Stop debug.

Ctrl + F8 Create breakpoint.

Ctrl + Shift + F12 Maximize editor panel.

Most of these shortcuts are also available under Linux. Regarding MacOSX systems, you must replace

Ctrl key with Cmd key. You can find more shortcuts here.

Exercise 1:

Create a new Java project with IntelliJ called Test and copy this code in a class called Test . Then,

run the application to check if everything is OK.

https://shortcutworld.com/IntelliJ-IDEA/win/IntelliJ_Shortcuts

Development Environments

Page 7 of 7

public class Test
{
 public static void main(String[] args)
 {
 System.out.println("Hello");
 System.out.println("Have a nice day!");
 System.out.println("And learn a lot of Java :-)");
 }
}

